'Introduction to linear graphs'

The Knowledge for Progression:

- To know that a coordinate is in the form (X, Y)
- To know that straight lines are continuous

Speak Like a Mathematician

Key Word	Dual Coding	Definition
Horizontal		In a left to right direction. Parallel to the x-axis
Vertical		In a down to up direction. Parallel to the y-axis
Origin		The intersection of the y and x-axis. Taking the coordinate $(0,0)$

'Sequences'

The Knowledge for Progression:

- To know that an arithmetic sequence is where the terms increase or decrease by the same number each time.
- To know that " n " is the position of a value in the sequence.
- To know that " n " is always a positive integer.
- To know that a quadratic sequence is linked to square numbers.
- To know that a geometric sequence is where each term is generated by multiplying by a constant amount.
- To know that terms in a triangular sequence are generated by adding consecutive numbers, starting from 1.
- To know that the terms in a Fibonacci sequence are generated by adding the two previous terms.

Speak Like a Mathematician

Key Word	Dual Coding	Definition	
Sequence		$2,4,8,16 \ldots$	A set of values or diagrams that follow a pattern
Term	Term:	The position of a value or diagram in a sequence	
Term-to- term rule	Term:	The way that you obtain the next term of a sequence using the previous term	
Arithmetic			
sequence			

Nth term

Relates to the rule of a sequence where ' n ' represents the position of the term, starting the count of terms from the first term.

'Maps and bearings'

The Knowledge for Progression:

- To know that a bearing is always given in 3 figures
- To know the compass directions
- To know that North is $\mathbf{0 0 0}$
- To know clockwise direction

Speak Like a Mathematician

Key Word	Dual Coding	Definition
Bearing	Write bearings with 3 figures The bearing of B from A is 050°	Bearings are angles, measured clockwise
		A

'Surface area of prisms'
 The Knowledge for Progression:

- To know that surface area is the sum of the area of the faces of a 3D shape.
- To know that a face is a 2 D side that makes up a 3D shape.
- To know that a prism is a 3D shape with a uniform cross section. The cross section is a polygon.
- To know that the uniform cross-section is the polygon that is runs throughout the prism.

Speak Like a Mathematician

Key Word	Dual Coding	Definition
Area		The space inside a 2D shape
Surface Area		The total area of all the faces of a 3D shape added
Prism	\square	A 3D shape with a uniform cross section. The cross section is a polygon
Uniform crosssection		The same face that runs through the length of a 3D shape.

'Error intervals'

The Knowledge for Progression:

- To know that an error interval is the range of possible values a number could have been before rounding.
- To know that an error interval is written using inequalities.

Speak Like a Mathematician

Key Word	Dual Coding	Definition
Limits of accuracy		To describe all the possible values that a rounded number could be
Lower bound	$\begin{array}{lcc}86.45 \mathrm{~cm} & 86.5 \mathrm{~cm} & 86.55 \mathrm{~cm} \\ & & \\ & & \end{array}$	The smallest value that would round up to the estimated value
Upper bound	lower actual upper bound \quadmeasurement bound	The smallest value that would round up to the next estimated value
Error Interval	$x=30 \mathrm{~cm}$ to the nearest ten	The range of possible values a number could have been before it was rounded. Using the lower and upper bounds

