'Introduction to linear graphs'

The Knowledge for Progression:

- \circ To know that a coordinate is in the form (X,Y)
- \circ $\,$ To know that straight lines are continuous

<u>'Sequences'</u>

The Knowledge for Progression:

- To know that an arithmetic sequence is where the terms increase or decrease by the same number each time.
- \circ ~ To know that "n" is the position of a value in the sequence.
- To know that "n" is always a positive integer.
- \circ \quad To know that a quadratic sequence is linked to square numbers.
- To know that a geometric sequence is where each term is generated by multiplying by a constant amount.
- To know that terms in a triangular sequence are generated by adding consecutive numbers, starting from 1.
- \circ To know that the terms in a Fibonacci sequence are generated by adding the two previous terms.

Key Word	Dual Coding	Definition
Sequence Term	Term: $1 \ 2 \ 3 \ 4 \ 5$	A set of values or diagrams that follow a pattern The position of a value or diagram in a sequence
Term-to- term rule	2, 4, 8, 16, <mark>32</mark>	The way that you obtain the next term of a sequence using the previous term
Arithmetic sequence	3, 7, 11, 15 4 +4 +4 +4 +4	Terms are generated by adding or subtracting a constant amount. This can also be called an arithmetic progression.
Geometric sequence	3, 12, 48, 194 ×4 ×4 ×4	Terms are generated by multiplying by a constant amount. This can also be called a geometric progression.
Triangular sequence	1 $1+2$ $1+2+3$ $1+2+3+4$ 1 = 3 = 6 = 10	Terms are generated by adding consecutive numbers, starting from 1
Fibonacci sequence	1, 1, 2, 3, 5, 8, 13	Terms are generated by adding the two previous terms

Relates to the rule of a sequence where 'n' represents the position of the term, starting the count of terms from the first term.

'Maps and bearings'

The Knowledge for Progression:

- $_{\circ}$ To know that a bearing is always given in 3 figures
- To know the compass directions
- $_{\circ}$ $\,$ To know that North is 000 $\,$
- To know clockwise direction

Key Word	Dual (Coding	Definition
Bearing	Write bearings with 3 figures The bearing of B from A is 050°	North	Bearings are angles, measured clockwise from north

'Surface area of prisms'

The Knowledge for Progression:

- To know that surface area is the sum of the area of the faces of a 3D shape.
- To know that a face is a 2D side that makes up a 3D shape.
- To know that a prism is a 3D shape with a uniform cross section. The cross section is a polygon.
- To know that the uniform cross-section is the polygon that is runs throughout the prism.

Key Word	Dual Coding	Definition
Area	5 - 1 2 3 4 5 3 6 7 8 9 10 11 12 13 14 15	The space inside a 2D shape
Surface Area	$\begin{array}{c} 20 \text{ cm} \\ 5 \text{ cm} \end{array}$	The total area of all the faces of a 3D shape added
Prism		A 3D shape with a uniform cross section. The cross section is a polygon
Uniform cross- section		The same face that runs through the length of a 3D shape.

'Error intervals'

The Knowledge for Progression:

- \circ $\,$ To know that an error interval is the range of possible values a number could have been before rounding.
- \circ $\,$ To know that an error interval is written using inequalities.

