'Algebraic manipulation'

The Knowledge for Progression:

- To know that terms are a constant, variable or combination of both and can be positive or negative. The 4 operations can be applied in the same way as numerical operations
- To know that an expression is made up of constants, variables and mathematical operations, but does not include an = sign
- To know that expanding means the removal of brackets by multiplication
- To know that factorising is a way of writing an expression as the product of its factors using brackets
- To know that a quadratic expression is in the form of $a x^{2}+b x+c$

Speak Like a Mathematician

Key Word	Dual Coding	Definition
Variable	$4 a+b-12$	A letter or a symbol representing a numerical value
Coefficient		A numerical value that comes before a variable
Term		A constant, variable or combination of both
Expression	$4 a+b-12$	Made up of constants, variables, and mathematical operations
Linear Expression	$2 y+3$	A first order expression, it has no variable with an exponent higher than one
Quadratic Expression	$2 y^{2}+3$	A second order expression, which is in the form $\mathrm{ax}^{2}+\mathrm{bx}+\mathrm{c}$
Equation	$4 a+b-12=32$	Two expressions connected by an equal symbol
Formula	$S=\frac{D}{T}$	Describes a mathematical relationship between variables
Expand	$2(3 a+5)$	The removal of brackets by multiplying
Factorise	$\overbrace{3 x+6 \equiv 3(x+2)}^{\text {Factorising }}$	A way of writing an expression as the product of its factors using brackets

'Standard form'

The Knowledge for Progression:

- To know that standard form is an alternative way to express large and small numbers
- To know that standard form has a set notation

Speak Like a Mathematician

Key Word	Dual Coding	Definition
Standard form	Standard form is written in the form $a \times 10^{n}$.	An alternative number system to
	Where a is $1 \leq a<10$ and n is any positive or negative number	express large and small numbers

'Pythagoras'

The Knowledge for Progression:

- To know that Pythagoras' theorem can only be applied to right-angled triangles. It involves all three sides of the triangle
- To know that the hypotenuse of a triangle is opposite the right-angle. This will always be the longest side of the triangle
- To know $a^{2}+b^{2}=c^{2}$ where a and b represent the shorter sides of a triangle

Speak Like a Mathematician

Key Word	Dual Coding	Definition
Hypotenuse	The longest length of a right-angled triangle. Always opposite the right-angle	

'Trigonometry'

The Knowledge for Progression:

- To know that trigonometry can only be applied to right-angled triangles where two sides and one angle are involved
- To know that you can label the sides hypotenuse, adjacent and opposite
- To know that the hypotenuse of a triangle is opposite the rightangle. This will always be the longest side of the triangle
- To know that the opposite side is opposite the angle involved (not the right-angle)
- To know that the adjacent side is next to the angle but is not the hypotenuse
- To know that
, $\operatorname{Sin}($ angle $)=\frac{\text { Opposite }}{\text { Hyoptenuse }} \operatorname{Cos}($ angle $)=\frac{\text { Adjacent }}{\text { Hypotenuse }} \quad$ Tan $($ angle $)=\frac{\text { opposite }}{\text { Adjacent }}$

Speak Like a Mathematician

Key Word	Dual Coding	Definition
Hypotenuse		The longest length of a right-angled triangle. Always opposite the right- angle
Adjacent		The length opposite involved (not the angle right angle)

'Solving equations and inequalities'

The Knowledge for Progression:

- To know that an equation contains an equals symbol, variable and constant
- To know that an inequality contains an inequality symbol, variable and constant
- To know that equation/inequality are formed from expressions
- To know that solve means to find the value of the variable
- To know that solving always requires performing the inverse operations

Speak Like a Mathematician

Key Word	Dual Coding	Definition
Equation	$4 \mathrm{a}+\mathrm{b}-12=32$	Two expressions connected by an equal symbol
Inequality	$4 \mathrm{a}+\mathrm{b}-12>32$	Two expressions connected by an inequality symbol
Inverse	$\frac{x}{5}=6$	Find the value of the variable

'Scatter graphs'

The Knowledge for Progression:

- To know that a scatter graph shows the correlation between two variables
- To know that a positive correlation means that as one variable increases, the other variable increases
- To know that a negative correlation means that as one variable increases, the other variable decreases
- To know that no correlation means there is no link between the variables
- To know that a line of best fit follows the trend of the data

