'Ratio and Proportion'

The Knowledge for Progression:

- To know that a ratio is a comparison of 2 or more quantities in relation to each other
- To know that proportion is a multiplicative relationship between values, as one value increase so does the other
- To know that inverse proportion is the multiplicative relationship between values, where one value increases the other decreases
- To know that an exchange rate is the proportional relationship between 2 currencies
- To know that better value for money is when the cost per unit is less.

Key Word	Dual Coding	Definition
Ratio	$\begin{array}{c} 1:2\\ 1\\ \frac{1}{3} \text{ red} \\ \frac{2}{3} \text{ green} \end{array}$	A part-to-part comparison
Proportion	$x 2 \qquad \begin{array}{c} 3:4 \\ = \\ 6:8 \end{array} \qquad x 2 \end{array} \qquad \begin{array}{c} \text{Direct} \\ \text{Proportion} \\ \\ \text{Quantity 1 Quantity 2} \end{array}$	A mathematical relationship, where quantities are
	$x^{2} \qquad \begin{pmatrix} 3:4 \\ = \\ 6:2 \end{pmatrix} \div^{2}$	increasing or decreasing in the same ratio

'Area of a trapezium'

The Knowledge for Progression:

- To know that the area of a trapezium is half of the sum of the parallel sides multiplied by the perpendicular distance between them
- To know that the formula to find the area of a trapezium is $\frac{(a+b)}{2}h$. Where a and b are the parallel sides.

Key Word	Dual Coding	Definition
Trapezium	a h h b	A quadrilateral with one pair of parallel sides

'Area and circumference of circles'

The Knowledge for Progression:

- \circ $\;$ To identify the parts of a circle; radius, diameter and circumference
- \circ $\,$ To know that the radius is the distance from the centre of the circle to its circumference
- \circ $\,$ To know that the diameter is the distance from one point of the circumference to another point going through the centre
- To know that the circumference is the perimeter of the circle
- o To know that the diameter is twice the radius
- \circ $\;$ To know that the radius is half of the diameter $\;$
- To know that the formula to calculate the area of a circle is $A = \pi \times radius^2$
- $\circ~$ To know that the formula to calculate the circumference of a circle is ${\it C}=\pi~\times diameter$

Key Word	Dual Coding	Definition
Circle	20 cm 20 cm 20 cm	A 2D shape where all points are equidistant from the centre
Radius		The distance from the centre of the circle to the circumference
Diameter	Centre Radius	The distance from one point of the circumference to another point going through the centre
Circumference	Circumference	The perimeter of the circle

'Rotation'

The Knowledge for Progression:

- $_{\odot}$ $\,$ To know that a rotation is the turning of a shape around a centre of rotation
- \circ $\,$ To know that the centre of rotation is the fixed point which you rotate the shape about
- To know that rotational symmetry is the property a shape has when it looks the same after a partial turn
- To know that the order of rotational symmetry is the number of times the shape fits exactly into itself during a full rotation of 360°

Key Word Dual Coding Definition y The turning of a Rotation shape around a centre of rotation centre of The fixed point Centre of rotation xwhich you rotate rotation the shape about Rotational A property of a 90° rotation 180° rotation shape when it looks symmetry the same after a partial turn (90° Order 1 The number of **Order of** Original times the shape fits rotational exactly into itself Full rotation 270° rotation symmetry during a full 360° rotation 90° Order 2 900

'Angles in polygons'

The Knowledge for Progression:

- To know that the sum of interior angles is calculated by (n-2) x 180°, where n is the number of sides of the polygon
- To know that sum of the interior angle and the exterior angle equal 180°

Key WordDual CodingDefinitionInterior angleExterior AngleThe angle that lies
within a polygonExterior
angleInterior AngleAn angle formed
outside the polygon

'Percentages'

The Knowledge for Progression:

- $_{\odot}$ $\,$ To know that multipliers are percentages expressed in decimal form
- $_{\odot}$ $\,$ To know that any original amount is 100% $\,$

Key Word	Dual Coding	Definition
Percentage	$13\% = \frac{13}{100}$	Per one hundred
Multiplier	25% ≡ 0.25	The equivalent decimal to a percentage
	140% = 1.4	percentage