'Negatives'

The Knowledge for Progression:

- $\circ~$ To know that a negative number is a value less than 0.
- To know that adding positives increases the value.
- To know that subtracting positives decreases the value.
- To know that adding negatives decrease the value.
- To know that subtracting negatives increases the value.
- To know that negative values need to have brackets around them when using a calculator

Key Word	Dual Coding	Definition
Negative	Negative Numbers - (Decreasing) Positive Numbers + (Increasing) -10-9-8-7-6-5-4-3-2-1012345678910	A value below zero

<u>'Perimeter'</u>

The Knowledge for Progression:

- \circ $\,$ To know that the perimeter is the sum of the lengths around a 2D shape
- To know that lengths are measured in linear units

Key Word	Dual Coding	Definition
Perimeter		The sum of the lengths around a 2D shape

<u>'Mean'</u>

The Knowledge for Progression:

• To know that the mean is the sum of quantities in a data set divided by the total number of quantities in the set

'Mode, median and range'

The Knowledge for Progression:

- To know that the mode/modal means the most common item of data (this does not need to be numerical).
- $\circ~$ To know that the median is the middle item of ordered data.
- To know that the range is a measure of spread. It is the difference between the largest and smallest items of data.

<u>'Area'</u>

The Knowledge for Progression:

- $\circ~$ To know that area is the number of square units inside a 2D shape
- $\circ~$ To know that area is measured in square units e.g. mm², cm², m²
- To know that the perpendicular height is the height that meets the base at a 90° angle.
- $\circ~$ To know that the area of a square, rectangle, rhombus and parallelogram is *base* \times *perpendicular height*
- To know that the area of a triangle is $\frac{Base \times perpendiculr \ height}{2}$

Key Word	Dual Coding	Definition
Area	5 5 1 2 3 4 5 3 6 7 8 9 10 ¥ 11 12 13 14 15	The number of square units inside a 2D shape
Perpendicular	$\stackrel{\longrightarrow}{\longrightarrow}$	Where lines cross or meet at a 90° angle

'Translations'

The Knowledge for Progression:

- \circ $\;$ To know that a translation is horizontal and vertical movement of a shape
- $_{\odot}$ $\,$ To know that a column vector describes a movement e.g. ADD VECTOR
- \circ $\,$ $\,$ To know that the top value of a column vector represents the horizontal movement
- $_{\odot}$ $\,$ To know that the bottom value of a column vector represents the vertical movement
- \circ To know that movements up and down are represented by a positive value
- $_{\odot}$ To know that movements left and down are represented by a negative value

Key Word	Dual Coding	Definition
Translate	<i>B</i> +2 +3	To translate means to move every point of an object in the same direction
Column vector	$\left(\begin{array}{c}3\\2\end{array}\right) is \left(\begin{array}{c}3 right\\2 up\end{array}\right)$	Describes the movement of a translation

<u>'Factors, multiples and primes'</u> <u>The Knowledge for Progression:</u>

- o To know that a multiple is a repeated multiplication of a value
- To know that the lowest common multiple (LCM) is the lowest multiple that is common in two or more values
- $_{\odot}$ $\,$ To know that a factor is a value that divides without a remainder
- To know that the highest common factor (HCF) is the highest factor that is common in two or more value
- To know that a prime number is an integer with only two factors, one and itself
- To know the prime numbers up to 19
- To know that prime factor decomposition is expressing any number as a product of its prime factors

Key Word	Dual Coding	Definition	
Factor	1 24 2 24 12 3 4 6	A value that divides without remainder	
Multiple	$5 \times 4 = 20$ factor factor factor of 20 of 20 multiple of 5	Repeated multiplication of a value	
Prime	$\begin{array}{c} 13 \\ 13 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 1$	An integer with only two factors, one and itself	

'Order of operations'

The Knowledge for Progression:

- To know the order of the operations is the order in which different mathematical operations are applied in a calculation
- To know that division and multiplication hold the same value and you work them out in the order they appear.
- To know that addition and subtraction hold the same value and you work them out in the order they appear in the question.

Key Word	Dual Coding	Definition
Order of operations	G C M S Subtract and Divide L-n C T 3 x + C T 3 x + C T 3 x +	The order in which different mathematical operations are applied in a calculation

'Fractions, decimals, and percentages'

The Knowledge for Progression:

- To know that the place value of the decimal gives the denominator of the fraction
- $_{\circ}$ $\,$ To know that a fraction shows a division
- To know that 100% and 1 whole are equivalent

Key Word	Dual Coding			Definition	
Equivalent					Same in value
	Fraction	Decimal	Percentage	Image	but in a
	$\frac{1}{2}$	0.5	50%		different form
	$\frac{1}{4}$	0.25	25%		
	<u>3</u> 4	0.75	75%		

'Fractions'

The Knowledge for Progression:

- $_{\odot}$ $\,$ To know that a fraction is a numerical value that is not an integer
- \circ $\,$ $\,$ To know that the numerator is the top value of a fraction
- $_{\odot}$ $\,$ To know that the denominator is the bottom value of a fraction

Key Word	Dual Coding	Definition
Fraction	$\frac{1}{2} = \frac{2}{4} = \frac{3}{6} = \frac{4}{8}$	A numerical value that is not an integer; representing how many parts of a whole we have
Numerator	$\frac{1}{4}$	The number above the line in a fraction. Represents the number of equal parts of the whole
Denominator		The number below the line in a fraction. Total of parts that make up the whole
Reciprocal	$\frac{3}{4} \times \frac{4}{3} = 1$	The multiplicative inverse of any non- zero number. Any non-zero number multiplied by its reciprocal is equal to 1