Probability

To know that the total probability sums to 1
To know that relative frequency is written in decimal form
To know that relative frequency is $\frac{\text { number of outcomes }}{\text { Number of trials }}$
To know that a sample space is the set of all possible outcomes of an experiment

To know that a Probability tree diagrams are a visual representation of a probability problem that involves a sequence of events

'Solving equations and inequalities'

The Knowledge for Progression:

- To know that an equation contains an equals symbol, variable and constant
- To know that an inequality contains an inequality symbol, variable and constant
- To know that equation/inequality are formed from expressions
- To know that solve means to find the value of the variable
- To know that solving always requires performing the inverse operations

Key Word	Dual Coding	Definition
Equation	$4 \mathrm{a}+\mathrm{b}-12=32$	Two expressions connected by an equal symbol
Inequality	$4 \mathrm{a}+\mathrm{b}-12>32$	Two expressions connected by an inequality symbol
Inverse	$\frac{x}{5}=6$	Find the value of the variable

What do I need to be able to do？

By the end of this unt you chaid be ate

 toForm and she equitors and requaltes
－Represent and roepret saditios on a rumber tre as requatites
I－Drow straght the grapts and frd sultors to equations
1－Form and solve equitors and

Keywords

Soltorr a vale we can pie in place of a vande that mokes the equation true
Vande：a symbol for a number we don＇t know yet．
Equation an equation sas that tho things are equal－It wil have an equak son＝
Expressiar numbers，symbols and operators grouped together to show the vilue of someting
Itertly On equelion where both sdes have vandes thdi．case the same ansner rcides इ
Inear：an equation or function that is the equation of a straght ine
Intersedian the port that two hes meet．
Irequally an nequalty compores two wlies showing fi one is gredier than ess than or equad to another
requadtes whth ukinows on both sides
L＝ニニニニーーーーーー

Form and solve nequalties 8

$3(2 x+4)-30$

$6 x+12-30$

6

$3(2 x+4)=30$

Soltions on a number ine

$=\overline{=}===\overline{=}====$
Pbttingstraigt he grapts

Angle geometry

'Trigonometry'

The Knowledge for Progression:

- To know that trigonometry can only be applied to right-angled triangles where two sides and one angle are involved
- To know that you can label the sides hypotenuse, adjacent and opposite
- To know that the hypotenuse of a triangle is opposite the right-angle. This will always be the longest side of the triangle
- To know that the opposite side is opposite the angle involved (not the rightangle)
- To know that the adjacent side is next to the angle but is not the hypotenuse
- To know that
$\operatorname{Sin}($ angle $)=\frac{\text { opposite }}{\text { Hyoptenuse }} \quad \operatorname{Cos}($ angle $)=\frac{\text { Adjacent }}{\text { Hypotenuse }} \quad$ Tan $($ angle $)=\frac{\text { opposite }}{\text { Adjacent }}$

'Surface area of prisms'

The Knowledge for Progression:

- To know that surface area is the sum of the area of the faces of a 3D shape.
- To know that a face is a 2D side that makes up a 3D shape.
- To know that a prism is a 3D shape with a uniform cross section. The cross section is a polygon.
- To know that the uniform cross-section is the polygon that is runs throughout the prism.

Key Word	Dual Coding	Definition
Area		The space inside a 2D shape
Surface Area		The total area of all the faces of a 3D shape added
Prism	\square	A 3D shape with a uniform cross section. The cross section is a polygon
Uniform crosssection		The same face that runs through the length of a 3D shape.

'Pythagoras'

- To know that Pythagoras' theorem can only be applied to rightangled triangles. It involves all three sides of the triangle.
- To know that the hypotenuse of a triangle is opposite the rightangle. This will always be the longest side of the triangle.
- To know $a^{2}+b^{2}=c^{2}$ where a and b are the shorter sides.

Key Word	Dual Coding	Definition
Hypotenuse	The longest length of a right-angled triangle. Always opposite the right- angle	
		The length Opposite Adjacent involved (not the right angle)

Similar Triangles

- Same shape, but not necessarily the same size.
- Corresponding angles are equal.
- Corresponding sides are in the same ratio.

$$
\frac{a}{p}=\frac{b}{q}=\frac{c}{r}
$$

To test for similar triangles:

- AA - If 2 corresponding angles are equal.
- SSS - If 3 corresponding sides are in the same ratio.
- SAS - Ratio of 2 pairs of corresponding sides are equal and their included angles are equal.

