'Sequences'

The Knowledge for Progression:

- To know that an arithmetic sequence is where the terms increase or decrease by the same number each time.
- To know that " n " is the position of a value in the sequence.
- To know that " n " is always a positive integer.
- To know that a quadratic sequence is linked to square numbers.
- To know that a geometric sequence is where each term is generated by multiplying by a constant amount.
- To know that terms in a triangular sequence are generated by adding consecutive numbers, starting from 1.
- To know that the terms in a Fibonacci sequence are generated by adding the two previous terms.

Speak Like a Mathematician

Key Word	Dual Coding	Definition	
Sequence		$2,4,8,16 \ldots$	A set of values or diagrams that follow a pattern
Term	Term:	The position of a value or diagram in a sequence	
Term-to- term rule	Term:	The way that you obtain the next term of a sequence using the previous term	
Arithmetic			
sequence			

Nth term		Relates to the rule of a sequence where ' n ' represents the position of the term, starting the count of terms from the first term.

'Introduction to linear graphs'

The Knowledge for Progression:

- To know that a coordinate is in the form (X, Y)
- To know that straight lines are continuous

Speak Like a Mathematician

Key Word	Dual Coding	Definition
Horizontal		In a left to right direction. Parallel to the x-axis
Vertical		In a down to up direction. Parallel to the y-axis
Origin		The intersection of the y and x-axis. Taking the coordinate $(0,0)$

'Translations'
 The Knowledge for Progression:

- To know that a translation is horizontal and vertical movement of a shape
- To know that a column vector describes a movement e.g. ADD VECTOR
- To know that the top value of a column vector represents the horizontal movement
- To know that the bottom value of a column vector represents the vertical movement
- To know that movements up and down are represented by a positive value
- To know that movements left and down are represented by a negative value

Speak Like a Mathematician

Key Word	Dual Coding	Definition
Translate	$\binom{3}{2}$ is $\left(\begin{array}{c}\text { O translate } \\ \text { means to } \\ \text { move every } \\ \text { point of an } \\ \text { object in the } \\ \text { same } \\ \text { direction }\end{array}\right.$	
Column vector		Describes the movement of a translation

'Rotation'

The Knowledge for Progression:

- To know that a rotation is the turning of a shape around a centre of rotation
- To know that the centre of rotation is the fixed point which you rotate the shape about
- To know that rotational symmetry is the property a shape has when it looks the same after a partial turn
- To know that the order of rotational symmetry is the number of times the shape fits exactly into itself during a full rotation of 360°

Speak Like a Mathematician

Key Word	Dual Coding	Definition
Rotation	\square	The turning of a shape around a centre of rotation
Centre of rotation		The fixed point which you rotate the shape about
Rotational symmetry		A property of a shape when it looks the same after a partial turn
Order of rotational symmetry		The number of times the shape fits exactly into itself during a full 360° rotation

'Enlargements'

The Knowledge for Progression:

- To know that an enlargement changes the size of a shape in proportion.
- To know that a scale factor describes how much the shape is enlarged by.
- To know that the centre of enlarge is the point from which a shape is enlarged.

Speak Like a Mathematician

Key Word	Dual Coding	Definition
Enlargement		A transformation in which lengths are multiplied whilst directions and angles remain the same.
Scale Factor	Shape A has been enlarged into shape B by a ratio of 1:3	The ratio of corresponding edge lengths

'Pythagoras'

The Knowledge for Progression:

- To know that Pythagoras' theorem can only be applied to right-angled triangles. It involves all three sides of the triangle
- To know that the hypotenuse of a triangle is opposite the right-angle. This will always be the longest side of the triangle
- To know $a^{2}+b^{2}=c^{2}$ where a and b represent the shorter sides of a triangle

Speak Like a Mathematician

Key Word	Dual Coding	Definition
Hypotenuse	The longest length of a right-angled triangle. Always opposite the right-angle	

'Trigonometry'

The Knowledge for Progression:

- To know that trigonometry can only be applied to right-angled triangles where two sides and one angle are involved
- To know that you can label the sides hypotenuse, adjacent and opposite
- To know that the hypotenuse of a triangle is opposite the rightangle. This will always be the longest side of the triangle
- To know that the opposite side is opposite the angle involved (not the right-angle)
- To know that the adjacent side is next to the angle but is not the hypotenuse
- To know that
, $\operatorname{Sin}($ angle $)=\frac{\text { Opposite }}{\text { Hyoptenuse }} \operatorname{Cos}($ angle $)=\frac{\text { Adjacent }}{\text { Hypotenuse }} \quad$ Tan $($ angle $)=\frac{\text { opposite }}{\text { Adjacent }}$

Speak Like a Mathematician

Key Word	Dual Coding	Definition
Hypotenuse		The longest length of a right-angled triangle. Always opposite the right- angle
Adjacent		The length opposite involved (not the angle right angle)

