Mathematics Knowledge Organiser

Year 10 – Autumn T1

'Recurring decimals'

The Knowledge for Progression:

 \circ $\;$ To know that a recurring decimal does not terminate.

 \circ $\;$ To know that recurring decimals can be written as a fraction.

Key Word		Dual Codir	ıg	Definition
Terminating decimal	6.1	3.653	-0.332	Decimals that have a finite number of digits after the decimal point. All terminating decimals are rational numbers.
Recurring decimal	7.Ż	8.14	0.148	A recurring decimal exists when decimal numbers repeat forever.

'Algebraic manipulation'

The Knowledge for Progression:

- To know that terms are a constant, variable or combination of both and can be positive or negative. The 4 operations can be applied in the same way as numerical operations.
- To know that an expression is made up of constants, variables and mathematical operations, but does not include an = sign.
- \circ $\;$ To know that a formula describes a mathematical relationship between variables.
- To know that a column vector describes movement.
- \circ $\,$ To know that expanding means the removal of brackets by multiplication.
- To know that factorising is a way of writing an expression as the product of its factors using brackets.
- \circ To know that a quadratic expression is in the form of $ax^2 + bx + c$.

Key Word	Dual Coding	Definition
Variable Coefficient	<mark>4a + b</mark> - 12	A letter or a symbol representing a numerical value A numerical value that comes before a variable A constant, variable or
Expression	4a + b - 12	combination of both Made up of constants, variables, and mathematical operations
Linear Expression	2y + 3	A first order expression, it has no variable with an exponent higher than one
Quadratic Expression	2y <mark>2</mark> + 3y + 8	A second order expression, which is in the form $ax^2 + bx + c$
Equation	4a + b – 12 <mark>=</mark> 32	Two expressions connected by an equal symbol
Formula	$S = \frac{D}{T}$	Describes a mathematical relationship between variables
Column Vector	$\left(\begin{array}{c}3\\2\end{array}\right) is \left(\begin{array}{c}3 right\\2 up\end{array}\right)$	Describes movement
Expand	2(3a + 5)	The removal of brackets by multiplying
Factorise	Factorising $3x + 6 \equiv 3(x + 2)$	A way of writing an expression as the product of its factors using brackets

'Rearranging formulae'

The Knowledge for Progression:

- To know that terms are a constant, variable or combination of both and can be positive or negative. The 4 operations can be applied in exactly the same way as numerical operations.
- \circ To know that a formula describes a mathematical relationship between variables.
- To know that "make the subject" means to rearrange a formula so that the required variable on one side of the equation on its own.

Key Word	Dual Coding	Definition
Variable Coefficient	<mark>4a + b</mark> - 12	A letter or a symbol representing a numerical value A numerical value that comes before a variable
Term		A constant, variable or combination of both
Formula	$S = \frac{D}{T}$	Describes a mathematical relationship between variables

'Algebraic fraction manipulation'

The Knowledge for Progression:

- \circ $\;$ To know how to simplify an algebraic fraction.
- \circ $\;$ To know how to create equivalent algebraic fractions.
- \circ $\;$ To know how to multiply algebraic fractions.
- \circ $\;$ To know how to divide algebraic fractions.
- \circ $\;$ To know how to add and subtract algebraic fractions.

Key Word	Dual Coding	Definition
Simplify	Simplify: $\frac{18}{27}$ Step 1 Factors of 18: 1, 2, 3, 6, 9, 18 Factors of 27: 1, 3, 9, 27 Step 3 $\frac{18}{27} \div 9 = 2$ 3	Reduce to lowest form by dividing by the HCF.
Equivalent	$\begin{array}{c} 2\\ 6\\ \hline \\ 6\\ \hline \\ $	Equal in value.

'Laws of indices'

The Knowledge for Progression:

- \circ $\;$ To know that anything to the power of zero equals 1.
- \circ $\;$ To know that anything to the power of 1 is itself.
- \circ $\;$ To know that to simplify is to reduce to lowest form.
- \circ $\;$ To know that the base value is the value that is being raised to a power.
- To know that an index (indices plural) is the value that tells you how many times to multiply the base by itself.

Key Word	Dual Coding	Definition
Simplify		Reduce to lowest simplest form
Indices	Index 35 X 35 Indices	Indices is plural for index. The number that tells you how many times to multiply the base by itself
Base	$ 3^5 $	The value that is being raised to a power

<u>'Standard Form'</u>

The Knowledge for Progression:

- To know how to multiply and divide numbers given in standard form.
- To know how to add and subtract numbers given in standard form.

Key Word	Dual Coding	Definition
Standard from	$a imes 10^n$ Where a is a number 1 \leq a < 10 and n is an integer.	An alternate number system to express large and small numbers.

<u>'Surds'</u>

The Knowledge for Progression:

- \circ $\;$ To know that a rational number can be written as a fraction.
- \circ $\,$ To know that an irrational number cannot be written as a fraction.
- To know that a surd is a root of a number that cannot be simplified into a rational number.
- To know that rationalising creates an equivalent fraction with a rational denominator.

Key Word	Dual Coding	Definition
Rational number	6 3.65 $\frac{2}{5}$ -0.4	An integer or a decimal that recurs or terminates
Irrational number	π $\sqrt{11}$ $-\sqrt{5}$	A number that has an infinite number of digits and does not recur or terminate
Surd	$\bigotimes \sqrt{11} \equiv 3.31662 \dots$ $\bigotimes \sqrt{9} \equiv 3$	A root that cannot be simplified into a rational number
Rationalise	$\frac{1}{\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{2}$	The process of removing surds from the denominator of a fraction

Mathematics Knowledge Organiser

Year 10 – Autumn T2

'Solving equations and inequalities'

The Knowledge for Progression:

- \circ ~ To know that an equation contains an equals symbol, variable and constant.
- \circ $\,$ To know that an inequality contains an inequality symbol, variable and constant.
- $_{\odot}$ $\,$ To know that equation/inequality are formed from expressions.
- \circ $\;$ To know that solve means to find the value of the variable.
- \circ $\;$ To know that solving always requires performing the inverse operations.

Key Word	Dual Coding	Definition
Equation	4a + b — 12 <mark>=</mark> 32	Two expressions connected by an equal symbol
Inequality	4a + b — 12 <mark>></mark> 32	Two expressions connected by an inequality symbol
Solve	$\frac{x}{5} = 6$	Find the value of the variable
	x = 30	
Inverse		Opposite operations that reverse the effect of the other operation
	$\bigstar \longleftrightarrow \overset{\bullet}{\longrightarrow}$	
	$a^2 \longleftrightarrow \sqrt{a}$	

'Angle geometry'

The Knowledge for Progression:

- To know that the sum of interior angles is calculated by (n-2) x 180°, where n is the number of sides of the polygon.
- To know that sum of the interior angle and the exterior angle equal 180°.
- To know that parallel lines are continuous lines that are always the same distance apart.
- To know that the transversal is a line that cuts through two lines.
- To know that corresponding angles are equal.
- To know that alternate angles are equal.
- To know that co-interior angles sum to 180°.
- To know that vertically opposite angles are equal.

'Circle geometry'

The Knowledge for Progression:

- \circ $\,$ To know that angles in triangles sum to 180 degrees.
- \circ $\,$ To know that angles in quadrilaterals sum to 360 degrees.
- To know that the angle created at the circumference given the diameter is always 90 degrees.
- \circ $\,$ To know that the angle at the centre is twice the angle at the circumference.
- To know that a quadrilateral with all 4 vertices touching the circumference of a circle is called a *cyclic quadrilateral*.
- \circ $\,$ To know that opposite angles in a cyclic quadrilateral sum to 180 degrees.

Key Word	Dual Coding	Definition
Quadrilateral		A 2D shape with 4 vertices and side lengths.
Circumference Diameter	Cicumterence	The length of a circle. A straight line with both ends touching the circumference and passing through the centre.
Cyclic quadrilateral		A quadrilateral with all 4 vertices toughing the circumference of a circle.

'Quadratic formula'

The Knowledge for Progression:

- To know that the quadratic formula is $\frac{-b\pm\sqrt{b^2-4ac}}{2a}$. To know that a is the coefficient of the x^2 term. 0
- 0
- To know that b is the coefficient of the *x* term. 0
- To know the c is the number term. 0

Key Word	Dual Coding	Definition
Variable	<mark>4a + b</mark> - 12	A letter or a symbol representing a numerical value.
Coefficient		A numerical value that comes before a variable.
Quadratic	2y <mark>2</mark> + 3y + 8	Involving a second order power, which is in the form ax ² + bx + c
		<u> </u>

'Further nth sequences'

The Knowledge for Progression:

- To know that an arithmetic sequence is where the terms increase or decrease by the same number each time.
- \circ \quad To know that "n" is the position of a value in the sequence.
- To know that "n" is always a positive integer.
- \circ \quad To know that a quadratic sequence is linked to square numbers.
- To know that a geometric sequence is where each term is generated by multiplying by a constant amount.
- To know that terms in a triangular sequence are generated by adding consecutive numbers, starting from 1.
- o To know that the terms in a Fibonacci sequence are generated by adding the two previous terms.

Key Word	Dual Coding	Definition
Sequence Term	2, 4, 8, 16 Term: 1 2 3 4 Term: 1 2 3 4 5	A set of values or diagrams that follow a pattern The position of a value or diagram in a sequence
Term-to- term rule	2, 4, 8, 16, <mark>32</mark> ×2 ×2 ×2 ×2	The way that you obtain the next term of a sequence using the previous term
Arithmetic sequence	3, 7, 11, 15 +4 +4 +4	Terms are generated by adding or subtracting a constant amount. This can also be called an arithmetic progression.
Geometric sequence	3, 12, 48, 194 • • • • • ×4 ×4 ×4	Terms are generated by multiplying by a constant amount. This can also be called a geometric progression.
Triangular sequence	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Terms are generated by adding consecutive numbers, starting from 1
Fibonacci sequence	1, 1, 2, 3, 5, 8, 13	Terms are generated by adding the two previous terms

