Physics paper two

Stretch and challenge booklet

Exam command words

Command words are the words and phrases used in exams that tell students how they should answer a question.

The following command words are taken from Ofqual's official list of command words and their meanings that are relevant to this subject.

Calculate	Use numbers in the question to work these out.	Draw	Produce, or add a diagram.
Choose	Select from a range of alternatives.	Estimate	Give an approximate value.
Compare	Describe similarities/differences.	Use	The answer must include the information in the question.
Define	Specify the meaning of something.	Work out	Students should use numbers in the question.
Describe	Recall facts, events or process in an accurate way.	Write	Short answer, no explanation or description.
Design	Set out how something will be done.	Evaluate	Students should use the information provided as well as their own knowledge and consider evidence for or against.
Determine	Use the data provided to work out your answer.	Explain	Students should make something clear, or state reasons for something happening.
Give	Short answer only.	Identify	Name or characterise.
Label	Add words to complete a diagram, picture or graph	Justify	Use evidence from the information supplied to support your answer.
Measure	Find an item of data for a given quantity.	Name	Single word or phrase.
Plot	Mark on a graph.	Plan	Write a method.
Predict	Give a plausible outcome.	Show	Provide structured evidence to reach a conclusion.
Suggest	Apply your own knowledge.	Sketch	Draw approximately.

Scientific key words

These are keywords often used in questions. You need to be able to recognise and use them in your answers.
$\left.\begin{array}{|c|c|c|c|}\hline \text { Hypothesis } & \begin{array}{c}\text { A scientific statement that explains } \\ \text { certain facts or observations }\end{array} & \text { Anomaly } & \text { A result that does not fit the pattern } \\ \hline \text { Prediction } & \begin{array}{c}\text { This describes what you think will happen } \\ \text { in an experiment }\end{array} & \text { Accuracy } & \begin{array}{c}\text { How close the reading is to the true } \\ \text { value }\end{array} \\ \hline \begin{array}{c}\text { Independent } \\ \text { variable }\end{array} & \begin{array}{c}\text { This is the variable that is changed during } \\ \text { an investigation. There should only be } \\ \text { one of these. }\end{array} & \text { True value } & \begin{array}{c}\text { This is the real value of a measurement in } \\ \text { an experiment }\end{array} \\ \hline \begin{array}{c}\text { Dependent } \\ \text { variable }\end{array} & \begin{array}{c}\text { This is the variable that changes as a } \\ \text { result of a change in the independent } \\ \text { variable }\end{array} & \text { Precision } & \begin{array}{c}\text { This is determined by the scale on the } \\ \text { measuring apparatus e.g. a ruler marked } \\ \text { mm is more precise than one in cm }\end{array} \\ \hline \text { Control } & \begin{array}{c}\text { Variables that remain constant, to make } \\ \text { sure that an investigation is valid }\end{array} & \text { Resolution } & \begin{array}{c}\text { The smallest change that can be read } \\ \text { from a measuring device for example a } \\ \text { ruler measured in mm or cm }\end{array} \\ \hline \text { Fair test } & \begin{array}{c}\text { This is where only the independent } \\ \text { variable is changed and the others } \\ \text { controlled }\end{array} & \text { Calibration } & \begin{array}{c}\text { When we make sure that the measuring } \\ \text { apparatus is making correct readings e.g. } \\ \text { the temperature of melting ice is } 0 \\ \text { degrees Celsius }\end{array} \\ \hline \text { Valid } & \begin{array}{c}\text { The results and conclusions will be } \\ \text { this if the variables are correctly } \\ \text { controlled }\end{array} & \text { Measurement } \\ \text { error }\end{array} \begin{array}{c}\text { The difference between the real value } \\ \text { and the measured value }\end{array}\right]$

Physics paper 2 Revision Checklist - Trilogy

Forces	
Name contact and non-contact forces and describe their interaction	
Define scalar and vector quantities and give examples of each	
Calculate resultant forces	
Define weight and use $w=m \times g$ to calculate any one of those values	
Define 'centre of mass'	
Draw free body diagrams to scale including resolving forces at different angles	
Know the equation to calculate work done and apply this to find work done, force or distance	
Describe the relationship between joules and newton-metres and convert between them	
Give examples of forces involved in stretching or compression and explain the difference between elastic deformation and inelastic deformation	
Describe the features of a graph of force applied versus the extension of a spring	
Know Hooke's Law ($\mathrm{f}=\mathrm{ke}$) and apply it in stretching or compression scenarios	
Calculate work done during stretching or compressing using e= $1 / 2 \mathrm{kx} \mathrm{e}{ }^{2}$	
Motion	
Interpret distance-time graphs to calculate velocity and total distance moved	
Explain the difference between distance and displacement	
Know typical values for speed for walking, running, cycling and sensible values for car, train and airplane speeds	
Describe the difference between velocity and speed and calculate them using $\mathrm{s}=\mathrm{d} / \mathrm{t}$	
Describe circular motion in terms of speed and direction	
Interpret distance time graphs to find speed, including drawing a tangent if the object is accelerating	
Describe what is meant by acceleration	
Calculate the acceleration or deceleration of an object using $a=v-u / t$, using negative values to represent deceleration	
Use uniform acceleration equation to calculate acceleration, velocity or distance	
Know that acceleration under gravity is $9.8 \mathrm{~m} / \mathrm{s}^{2}$	
Interpret velocity-time graphs to calculate acceleration, velocity and total distance/displacement	
Describe the change in forces that occur during free fall of an object through a fluid	
Define terminal velocity	

Magnetism \& electromagnetism		
Describe the force between two poles of a magnet		
Describe the difference between permanent and induced magnets		
Explain how a current produces a magnetic field and how a solenoid can increase the strength		
Explain how the interaction of a magnetic field induce by a current and a magnetic field between a horseshoe magnet can produce movement of the wire		
Explain the motor effect and use Flemings left hand rule to predict direction of movement		
Describe factors that can affect the size of the force acting on a wire and use F=BIl to calculate it		
Explain how an electric motor can produce a turning effect		

Required practical

activities

Organise the method used to measure force and extension of spring:

- Adjust the ruler so that it is vertical. The zero on the scale needs to be at the same height as the top of the spring.
- Attach the ruler to the bottom clamp with the zero on the scale at the top of the ruler.
- Take a reading on the ruler - this is the length of the unstretched spring.
- Add further weights. Measure the length of the spring each time.
- Hang the spring from the top clamp.
- Attach the splint securely to the bottom of the spring. Make sure that the splint is horizontal and that it rests against the scale of the ruler.
- Carefully hook the base of the weight stack onto the bottom of the spring. This weighs 1.0 newton (1.0 N).
What can you do to minimise errors in this experiment. For each part of the experiment suggest how it has been minimised:
- Adjust the ruler so that it is vertical.
- Attach the ruler to the bottom clamp with the zero on the scale
- Hang the spring from the top clamp
- Make sure that the splint is horizontal

Risk Assessment:

Suggest what the risks are in this experiment. Describe what you should do to minimise the risks.

1.
2.
3.

What are the variables in this experiment:

Independent:

Dependent:

Control (describe how you might keep these from affecting your experiment):

Plan

Without turning over (!) write a step by step plan for measuring the extension of a spring when weights are put on.

Measuring the Extension against force

Force on Spring (N)	Extension (cm)
1 N	8 cm
2 N	12 cm
3 N	16 cm
4 N	17 cm
5 N	17 cm

As the force increases, the extension \qquad
Until it reaches it's \qquad of proportionality at
\qquad .cm

Complete the sketch graph

Acceleration

Organise the method used to obtain results on acceleration:

- Connect the light gates to the interface and computer. Start the software for timing, telling the computer the length of card.
- Place the air track on a bench and attach it to the vacuum cleaner, set on 'blow'.
- Tie a length of string to the glider. Pass the string over the pulley and attach the weight stack to the other end of the string.
- Make sure the string is horizontal and is in line with the air track.
- Clamp the two light gates horizontally. Position them above the so that the card passes through them as the glider moves.
- Switch on the vacuum cleaner. The glider should accelerate thrc light gates as the weight falls to the ground.
- Place a glider with a piece of card attached on the air track and s on the vacuum cleaner. The glider should lift up off the air track free to move.

Risk Assessment:

Suggest what the risks are in this experiment. Describe what you should do to minimise the risks.

Variables

In the experiment, suggest what the following are:

Independent Variable:

Dependent Variable:

Two Control Variables (include how they are to be controlled)
1.
2.

Acceleration
 Formula

Acceleration = change in velocity/time

Complete the following calculations:

1. A mass accelerates from rest to $4 \mathrm{~m} / \mathrm{s}$ in 8 seconds. What is the acceleration?
2. A mass accelerates from $2 \mathrm{~m} / \mathrm{s}$ to $8 \mathrm{~m} / \mathrm{s}$ in 2 seconds. What is the acceleration?
3. A mass decelerates from $100 \mathrm{~m} / \mathrm{s}$ to $50 \mathrm{~m} / \mathrm{s}$ in 10 seconds. What is the deceleration?

Radiation and Absorption

Organise the method used to measure Radiation and Absorption:

- Use the detector to measure the amount of infrared radiated from each surface.
- Draw a bar chart to show the amount of infrared radiated against the type of surface.
- Fill the cube with very hot water and replace the lid of the cube.
- Make sure that before a reading is taken the detector is the same distance from each surface.
- Place the Leslie cube on to a heat proof mat.

Precision

How might precision be affected and why by:
Changing an infra-red detector to:
A Digital Thermometer will \qquad because

An Analogue Thermometer will \qquad because

An Analogue Thermometer painted black will \qquad because

Risk Assessment
Suggest what the risks are in this experiment. Describe what you should do to minimise the risks.
1.
2.

Plan Without turning over (!) write a step by step plan for measuring radiation and absorption

Waves

Organise the method used to prepare a microscope slide:

- Switch on the vibration generator. The elasticated cord should start to vibrate.
- Calculate the speed of the wave using the equation: wave speed $=$ frequency x wavelength.
- Adjust the tension in the string or move the wooden bridge to adjust the length of the string, until a clear wave pattern is seen.
- Attach the signal generator to the vibration generator.
- The frequency is the frequency of the power supply.
- The waves should look like they are stationary.
- Use a metre ruler to measure across as many half wavelengths as possible (a half wavelength is one loop).
- Then divide the total length by the number of half waves. Multiplying this number by two will give the wavelength.
- Attach one end of a piece of elasticated cord to the signal generator and some masses on a pully to the other.

Speed Of Waves

Rearrange this formula to find:

Formula

Speed = Frequency x Wavelength
Frequency $=$

Wavelength =

Units of Speed are. \qquad Units of Frequency are. \qquad Units of Wavelength are. \qquad
Help?
$100 \mathrm{~cm}=1 \mathrm{~m}$
$\mathrm{~cm} \rightarrow \mathrm{~m} \div 100$
$\mathrm{~m} \rightarrow \mathrm{~cm} \times 1000$
$1 \mathrm{~cm}=100 \mathrm{~m}$

Precision and Accuracy

Describe and Explain how these changes would affect Precision and Accuracy:

Measuring the wavelength in mm
Affect: \qquad
Explanation: \qquad

Repeating the wavelength measurements, removing anomalous results and doing a mean average. Affect: Explanation: \qquad

One of your own suggestions:

Calculations

Use the equations opposite to calculate the following:

1. If the frequency of the wave is 100 Hz and the wavelength is 0.25 m , what is the speed of the waves?
2. If the frequency of the wave is 250 Hz and the wavelength is 0.2 m , what is the speed of the waves?
3. If the frequency of the wave is 300 Hz and the wavelength is 10 cm , what is the speed of the waves? (Remember to convert to m)
4. If the frequency of the wave is 1000 Hz and the wavelength is 2 cm , what is the speed of the waves? (Remember to convert to m)

Plan Without turning over (!) write a step by step plan for measuring the speed of a waves.	Variables:
	State what the variables are:
	Independent:
	Dependent:
	Control Variables:
	1..............................
	How would you control this variable so it did not affect the results?
	\square
	2...............................
	How would you control this variable so it did not affect the results?
	-
	How would changing the mass affect the tension in the elastic?
	How would it affect the speed of the wave? Why?

Exam questions

DON'T WORRY ABOUT YOUR EXAIW

IM SURETT WILCEO swumpulnaly

1. The photograph below shows a computer keyboard.

There is a spring under each key.

(a) The springs behave elastically when a force is applied.

What is meant by elastic behaviour?
Tick ($\sqrt{ }$) one box.

The spring will be compressed when the force is applied to it.

The spring will become deformed when the force is applied to it.

The spring will become longer when the force is removed. \square

The spring will return to its original length when the force is removed.

(b) Suggest two properties that should be the same for each spring.

1. \qquad
\qquad
2. \qquad
\qquad
(c) Figure 1 shows one of the keys and its spring.

Figure 1

The key must be pressed with a minimum force of 0.80 N before the key touches the switch.

Calculate the spring constant of the spring in Figure 1.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\text { Spring constant }=\ldots \mathrm{N} / \mathrm{m}
$$

(d) Figure 2 shows a spring that has been hung from a support.

The spring is stationary and has been stretched beyond its limit of proportionality.
Figure 2

Which two statements are true for the spring in Figure 2?
Tick (\checkmark) two boxes.

The elastic potential energy of the spring is zero. \square

The extension of the spring is directly proportional to the force applied. \square

The upward force on the spring is equal to the downward force. \square

The spring cannot be stretched any further. \square

The spring is inelastically deformed.
2. The speed limit on many roads in towns is $13.5 \mathrm{~m} / \mathrm{s}$

Outside schools this speed limit is often reduced by one-third.
(a) Calculate the reduced speed limit.
\qquad
\qquad
\qquad
\qquad
Reduced speed limit $=$ \qquad m / s
(b) A reduced speed limit may reduce air pollution.

Explain one other advantage of a reduced speed limit.
\qquad
\qquad
\qquad
\qquad
(c) Figure 1 shows a car being driven at a constant speed past a speed camera.

Figure 1

The camera recorded two images of the car 0.70 s apart.
The car travelled 14 m between the two images being taken.
The maximum deceleration of the car is $6.25 \mathrm{~m} / \mathrm{s}^{2}$
Calculate the minimum braking distance for the car at the speed it passed the speed camera.
\qquad
Minimum braking distance $=$ \qquad m
(d) Figure 2 shows a delivery van full of packages.

Figure 2

The driver delivers all the packages.
The empty van has a shorter stopping distance than the full van when driven at the same speed.

Explain why.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(Total 13 marks)
3. The diagram shows some springs inside a mattress.

(a) Which proportionality is true when a force is applied to a spring?

Tick (\checkmark) one box.
Example of an empty box table

Force \propto energy stored

Force \propto extension

Force \propto length \square

Force \propto spring constant

A mattress contains 1200 identical springs.
A person lies on the mattress and the springs compress.
The mean force on each spring in the mattress is 0.49 N
(b) Calculate the mass of the person.
gravitational field strength $=9.8 \mathrm{~N} / \mathrm{kg}$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Mass = kg
(c) The mean compression of each spring is $3.5 \times 10^{-3} \mathrm{~m}$

Calculate the spring constant of each spring in the mattress.
Give the unit.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Spring constant $=$ \qquad

$$
\text { Unit }=
$$

(d) For a given force, different springs compress by different amounts.

Explain what property of the springs would make the mattress soft.
\qquad
\qquad
\qquad
\qquad
4. Below is a free body diagram for an aeroplane flying at a constant speed and at a constant height.

The speed of the aeroplane is much greater than the speed at which the aeroplane lands.

(a) Explain how the forces need to change so the aeroplane can land.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) The aeroplane lands at a speed of $80 \mathrm{~m} / \mathrm{s}$

After landing, the aeroplane takes 28 s to decelerate to a speed of $10 \mathrm{~m} / \mathrm{s}$
The mean resultant force on the aeroplane as it decelerates is 750000 N
Calculate the mass of the aeroplane.
\qquad
Mass $=\ldots \mathrm{kg}$
(Total 9 marks)
5. A student placed a permanent magnet on a top-pan balance.

He clamped a straight piece of wire so that it was suspended in the magnetic field.
Figure 1 shows the apparatus.
Figure 1

(a) When a current passed through the wire from \mathbf{A} to \mathbf{B}, the reading on the balance increased.

Explain why.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) The student increased the current in the wire.

Sketch a graph on Figure 2 to show the relationship between the current and magnetic force on the wire.

Label the axes, with the independent variable on the x-axis.

Figure 2

(c) The length of the wire in the magnetic field in Figure 1 is $4.8 \times 10^{-2} \mathrm{~m}$

The current in the wire is 0.80 A
The reading on the balance is $1.2 \times 10^{-3} \mathrm{~kg}$
Gravitational field strength $=9.8 \mathrm{~N} / \mathrm{kg}$
Calculate the magnetic flux density of the permanent magnet.
\qquad
Magnetic flux density $=$ \qquad tesla
6. Figure 1 shows the magnetic field pattern around a permanent magnet.

Figure 1

(a) Where is the magnetic field of the magnet the strongest?
\qquad
\qquad
(b) How does Figure 1 show that the strength of the magnetic field is not the same at all places?
\qquad
\qquad

Figure 2 shows an electromagnet being used to separate iron and steel from non-magnetic metals.

Figure 2

(c) Explain one reason why an electromagnet is used instead of a permanent magnet.
\qquad
\qquad
\qquad
\qquad
(d) Pieces of iron and steel are attracted to the electromagnet.

Name two other metals that would be attracted to the electromagnet.
1 \qquad
2 \qquad
(e) The design of the electromagnet cannot be changed.

Give two ways the force exerted by the electromagnet on a piece of iron or steel could be increased.

1 \qquad
\qquad
2 \qquad
\qquad

The conveyor belt that moves the pieces of metal is driven by an electric motor.
Figure 3 shows a simple electric motor.
Figure 3

(f) The length of the wire $\mathbf{A B}$ in the magnetic field is 120 mm .

There is a current of 4.0 A in the wire. The length of wire $\mathbf{A B}$ experiences a force of 0.36 N .
Calculate the magnetic flux density between the magnets.
Give the unit.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Magnetic flux density = \qquad Unit \qquad
(g) Fleming's left-hand rule can be used to determine the direction of the force on wire $\mathbf{A B}$.

Complete the labels on Figure 4 to show Fleming's left-hand rule.
Figure 4

Direction of \qquad
7. A student made water waves in a ripple tank.
(a) Describe how the frequency and wavelength of the water waves in the ripple tank can be measured accurately.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The student recorded values for the frequency and the wavelength of waves in the ripple tank.
Table 1 and Table 2 show the results.

Table 1

Reading	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Frequency in hertz	9.8	9.4	9.3

Table 2

Reading	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
Wavelength in cm	1.7	2.2	2.1

(b) Determine the mean wave speed.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Mean wave speed = \qquad m / s
(c) What is the advantage of taking repeat readings and then calculating a mean?
\qquad
\qquad
(d) The speed of the wave is affected by the depth of the water in the ripple tank.

The deeper the water the faster the wave.
Explain how the depth of the water affects the wavelength of the wave if the frequency is constant.
\qquad
\qquad
\qquad
\qquad
8. Different parts of the electromagnetic spectrum are used in medical imaging.

Figure 1 shows an Figure of a person's hand taken with an infrared camera.
Figure 1

(a) Explain why the infrared camera is able to show that parts of the hand are at different temperatures.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Infrared has a range of wavelengths from 700 nm to 1 mm .

Which part of the electromagnetic spectrum would have waves with a wavelength of $6.5 \times$ $10^{-7} \mathrm{~m}$?

Tick (\checkmark) one box.

Infrared

Microwaves

Radio waves

Visible light

(c) Figure 2 shows X -rays and gamma rays being used for medical imaging.

Figure 2

To use X-rays for medical imaging, a machine produces a very brief burst of X-rays.
To use gamma rays for medical imaging, a radioactive isotope is injected into the patient's blood. The isotope is circulated around the body in the blood. The isotope emits gamma rays.

Compare the potential risks to a patient of using X-rays and gamma rays for medical imaging.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

X-rays are produced by colliding high-energy electrons into a metal target.
The electrons have high energy because they are accelerated to high speeds.
Only a small proportion of the kinetic energy of an electron is converted into an X-ray when it collides with the metal target.
(d) An electron is accelerated through a distance of 15 mm .

The work done on the electron is $1.2 \times 10^{-13} \mathrm{~J}$.
Calculate the force on the electron.
\qquad
\qquad
\qquad
\qquad
\qquad
Force $=$ \qquad N
(e) The metal target is made from tungsten.

Tungsten has the highest melting point of any metal.
Explain why using tungsten as the metal target enables the X-ray machine to be more powerful.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Mark schemes

1. (a) the spring will return to its original length when the force is removed
(b) Any two from:

- spring constant
- (original) length
- diameter
(c) $0.80=\mathrm{k} \times 0.0040$
$k=\frac{0.80}{0.0040}$
$\mathrm{k}=200(\mathrm{~N} / \mathrm{m})$

2. (a) $13.5 \times \frac{2}{3}$
$9.0(\mathrm{~m} / \mathrm{s})$
allow 9 (m / s)
OR
$13.5 \times \frac{1}{3}=4.5(1)$
$13.5-4.5=9.0(\mathrm{~m} / \mathrm{s})(1)$
(b) reduced speed reduces stopping distance allow reduces thinking / braking distance
means less chance of collision
OR
the car will have less kinetic energy (1)
so less likely to cause injury in the event of a collision (1)
(c) $14=v \times 0.70$
$v=\frac{14}{0.70}$
$\mathrm{v}=20(\mathrm{~m} / \mathrm{s})$
$0^{2}-20^{2}=2 \times(-6.25) \times s$
$s=\frac{20^{2}}{(2 \times 6.25)}$
ignore minus signs throughout
$\mathrm{s}=32(\mathrm{~m})$
(d) same maximum force applied by the brakes
because mass is less there is a greater deceleration allow momentum for mass
braking distance is less
OR
reducing the mass reduced the kinetic energy of the van (at a given speed) (1) less work needed to be done to bring the van to a stop (1)
(force from the brakes is the same) so braking distance is less (1)
3. (a) force \propto extension
(b)
$F=0.49 \times 1200$
or
$\mathrm{F}=588(\mathrm{~N})$
$588=m \times 9.8$
allow a correct substitution using an incorrectly calculated value of F
$\mathrm{m}=\frac{588}{9.8}$
allow a correct rearrangement using an incorrectly calculated value of F
$\mathrm{m}=60(\mathrm{~kg})$
allow a correct calculation using an incorrectly calculated value of F

OR

$0.49=$ mean mass per spring $\times 9.8(1)$
mean mass per spring $=\frac{0.49}{9.8}$
mean mass per spring $=0.050(1)$
$\mathrm{m}=0.050 \times 1200=60(\mathrm{~kg})(1)$
(c)

an answer of 140 scores 3 calculation marks

$0.49=k \times 3.5 \times 10^{-3}$
$\mathrm{k}=\frac{0.49}{3.5 \times 10^{-3}}$

140
N / m
(d) springs with a low spring constant
because they can compress by a larger amount (for a given force)
allow they can compress by the same amount for a smaller force allow low stiffness
[11]
4. (a) thrust decreases
allow air resistance or drag increases
ignore air resistance decreases as speed decreases
so there is a resultant force in opposite direction
allow so air resistance or drag is greater than thrust
lift must decrease (because weight stays the same)
so there is a resultant downwards force
allow so weight is greater than lift
the last two marking points cannot be awarded if there is a reference to the weight increasing
(b)
$a=\frac{(10-80)}{28}$
allow $\mathrm{a}=\frac{(80-10)}{28}$
$\mathrm{a}=(-) 2.5\left(\mathrm{~m} / \mathrm{s}^{2}\right)$
a valid equation must have been used to calculate a to score subsequent marks
5. (a) the current creates a magnetic field in the wire which interacts with the magnetic field from the permanent magnet

Flemming's left hand rule says the force on the wire is upwards
so the force on the permanent magnets is downwards
(b) x-axis labelled current and
y-axis labelled (magnetic) force
ignore units on labels
straight line through the origin
(c) $\mathrm{W}=\mathrm{mg}=1.2 \times 10^{-3} \times 9.8$
$W=0.01176$

$$
0.01176=B \times 0.80 \times 4.8 \times 10^{-2}
$$

$$
\mathrm{B}=\frac{1.2 \times 10^{-3} \times 9.8}{0.8 \times 4.8 \times 10^{-2}}
$$

$$
B=0.31
$$

an answer of 0.031 scores 3 marks
an answer of 0.31 scores 5 marks
6. (a) at the poles
(b) the distance between the field lines varies
(c) electromagnet is easy to demagnetise allow electromagnet can be switched off
so easy to remove separated metal
allow electromagnet is (generally) stronger than a permanent magnet for 1 mark if no other marks are awarded
(d) cobalt
nickel
(e) increases the current in the coil of the electromagnet
allow increase potential difference across the coil
bring the electromagnet closer to the pieces of iron and steel
(f) $\mathrm{L}=0.120 \mathrm{~m}$

$$
0.36=B \times 4.0 \times 0.120
$$ allow a correct substitution of an incorrectly / not converted value of L

$B=\frac{0.36}{(4.0 \times 0.120)}$
allow a correct rearrangement using an incorrectly / not converted value of L
$B=0.75$
allow a correct calculation using an incorrectly / not converted value of L

T
(g)

allow 1 mark for 1 or 2 correct
7. (a) Level 2: The design/plan would lead to the production of a valid outcome. All key steps are identified and logically sequenced.

Level 1: The design/plan would not necessarily lead to a valid outcome. Most steps are identified, but the plan is not fully logically sequenced.

No relevant content

Indicative content

Wavelength

- place a metre rule at the side of the screen perpendicular to the wave fronts
- use the metre rule to measure the length of the screen
- take a photograph of the shadow on the screen
- count the number of complete waves on the screen
- determine the wavelength by dividing the length of the by the number of complete waves
or
- place a metre rule at the side of the screen perpendicular to the wave fronts
- take a photograph of the shadow on the screen
- use the metre rule to measure the distance between two wave front

Frequency

- count the number of waves that pass a given point
- time how long it takes for the waves to pass that point using a stop clock
- frequency is number of waves divided by time taken
or
- put a stop clock on the screen
- use a digital video camera to record the waves passing a point
- replay in slow motion and count the number of waves passing a point in 1 second

There must be a description of both frequency and wavelength measurement to access level 2
(b) mean $f=9.5 \mathrm{~Hz}$
mean $\lambda=0.020 \mathrm{~m}$
$v=9.5 \times 0.020$
allow a correct substitution of an incorrect value of mean frequency and/or wavelength
$\mathrm{v}=0.19(\mathrm{~m} / \mathrm{s})$
allow a correct calculation using an incorrect value of mean frequency and/or wavelength
or
$\mathrm{v}=9.8 \times 0.017$
and
$\mathrm{v}=9.4 \times 0.022$
and
$\mathrm{v}=9.3 \times 0.021(2)$
$v=\frac{(1.67+2.07+1.95)}{3}$
$\mathrm{v}=0.19(\mathrm{~m} / \mathrm{s})(1)$
allow a maximum of 2 marks if a single pair of values is used
(c) reduces the effect of random errors
allow anomalous readings can be discarded before calculating a mean
(d) deeper water means longer wavelength
because
v increases and f is constant allow for a fixed frequency period is constant
8. (a) different temperatures emit different intensities of infrared
which are represented (on the infrared camera) as different shades / colours allow wavelength / frequency / amount for intensity throughout
(b) visible light
(c) both ionising radiation so some risk of cancer
the whole body is irradiated by gamma rays
when an X-ray is taken only part of the body is exposed
exposure time for gamma rays is longer
(d) $1.2 \times 10^{-13}=\mathrm{F} \times 0.015$
$F=\frac{1.2 \times 10^{-13}}{0.015}$
allow a correct rearrangement using an incorrectly / not converted value of s
$F=8.0 \times 10^{-12} \mathrm{~N}$
allow 8×10^{-12} allow a correct calculation using an incorrectly / not converted value of s
(e) some of the energy of the electrons causes heating
(therefore) increasing the temperature
(so using tungsten) allows more electrons to be collided per second than using any other metal
allow (so using tungsten) enables more energy per second to be transferred than using any other metal

