Physics paper one

Stretch and

 challenge booklet

Exam command words

Command words are the words and phrases used in exams that tell students how they should answer a question.

The following command words are taken from Ofqual's official list of command words and their meanings that are relevant to this subject.

Calculate	Use numbers in the question to work these out.	Draw	Produce, or add a diagram.
Choose	Select from a range of alternatives.	Estimate	Give an approximate value.
Compare	Describe similarities/differences.	Use	The answer must include the information in the question.
Define	Specify the meaning of something.	Work out	Students should use numbers in the question.
Describe	Recall facts, events or process in an accurate way.	Write	Short answer, no explanation or description.
Design	Set out how something will be done.	Evaluate	Students should use the information provided as well as their own knowledge and consider evidence for or against.
Determine	Use the data provided to work out your answer.	Explain	Students should make something clear, or state reasons for something happening.
Give	Short answer only.	Identify	Name or characterise.
Label	Add words to complete a diagram, picture or graph	Justify	Use evidence from the information supplied to support your answer.
Measure	Find an item of data for a given quantity.	Name	Single word or phrase.
Plot	Mark on a graph.	Plan	Write a method.
Predict	Give a plausible outcome.	Show	Provide structured evidence to reach a conclusion.
Suggest	Apply your own knowledge.	Sketch	Draw approximately.

Scientific key words

These are keywords often used in questions. You need to be able to recognise and use them in your answers.
$\left.\begin{array}{|c|c|c|c|}\hline \text { Hypothesis } & \begin{array}{c}\text { A scientific statement that explains } \\ \text { certain facts or observations }\end{array} & \text { Anomaly } & \text { A result that does not fit the pattern } \\ \hline \text { Prediction } & \begin{array}{c}\text { This describes what you think will happen } \\ \text { in an experiment }\end{array} & \text { Accuracy } & \begin{array}{c}\text { How close the reading is to the true } \\ \text { value }\end{array} \\ \hline \begin{array}{c}\text { Independent } \\ \text { variable }\end{array} & \begin{array}{c}\text { This is the variable that is changed during } \\ \text { an investigation. There should only be } \\ \text { one of these. }\end{array} & \text { True value } & \begin{array}{c}\text { This is the real value of a measurement in } \\ \text { an experiment }\end{array} \\ \hline \begin{array}{c}\text { Dependent } \\ \text { variable }\end{array} & \begin{array}{c}\text { This is the variable that changes as a } \\ \text { result of a change in the independent } \\ \text { variable }\end{array} & \text { Precision } & \begin{array}{c}\text { This is determined by the scale on the } \\ \text { measuring apparatus e.g. a ruler marked } \\ \text { mm is more precise than one in cm }\end{array} \\ \hline \text { Control } & \begin{array}{c}\text { Variables that remain constant, to make } \\ \text { sure that an investigation is valid }\end{array} & \text { Resolution } & \begin{array}{c}\text { The smallest change that can be read } \\ \text { from a measuring device for example a } \\ \text { ruler measured in mm or cm }\end{array} \\ \hline \text { Fair test } & \begin{array}{c}\text { This is where only the independent } \\ \text { variable is changed and the others } \\ \text { controlled }\end{array} & \text { Calibration } & \begin{array}{c}\text { When we make sure that the measuring } \\ \text { apparatus is making correct readings e.g. } \\ \text { the temperature of melting ice is } 0 \\ \text { degrees Celsius }\end{array} \\ \hline \text { Valid } & \begin{array}{c}\text { The results and conclusions will be } \\ \text { this if the variables are correctly } \\ \text { controlled }\end{array} & \text { Measurement } \\ \text { error }\end{array} \begin{array}{c}\text { The difference between the real value } \\ \text { and the measured value }\end{array}\right]$

Physics Paper 1 Checklist- Trilogy

Recognise, describe and explain the shape of resistance- light level graph for a light dependent resistor		
Describe and explain uses of LDRs - e.g switching on lights when it gets dark		
Recognise, describe and explain the shape of resistance- temperature graph for a thermistor		
Label the features and describe the safe operation of a 3 pin plug		
Explain the difference between direct and alternating pd		
Calculate electrical power and energy transferred for given appliances		
Describe the features of the National Grid		
Particle theory		
Describe density in terms of particle arrangement		
Use Density = mass/volume to calculate values and use the correct units		
Explain the term 'internal energy'		
Describe differences in particle arrangement and energy in solids, liquids and gases		
Explain what happens to particles during a change of state		
Use the equation $\mathrm{E}=\mathrm{mL}$ to calculate mass, specific latent heat or energy		
Distinguish between specific heat capacity and specific latent heat		
Define the terms specific latent heat, latent heat of fusion, latent heat of vaporisation		
Atoms and Nuclear Physics		
Label the parts of an atom and state approximate sizes of the atom and the nucleus		
Explain what might cause changes in distance of electrons from the nucleus		
Describe the changes to the atomic model over time, and why those changes were made		
Describe what is meant by an isotope and describe some of their uses		
Describe the properties and origins of alpha, beta and gamma radiation		
Complete nuclear equations for alpha and beta decay		
Describe what is meant by the half-life of a radioactive isotope and obtain values for this from a decay curve		
Choose an appropriate source for a particular purpose		
Explain the difference between contamination and irradiation and compare the hazards of each		

Required practical

activities

Specific Heat Capacity

Organise the method used to obtain results to measure Specific Heat Capacity:	Improvements: Suggest ways in which you could improve these in - Switch the power pack to 12 V . Switch it on. - Record the temperature every minute for 10 minutes.		
- Place a heater in the larger hole in the block.			
- Record the ammeter and voltmeter readings (or			
Joule Meter Readings)		\quad Accuracy:	Precision:
:---			
- Put the thermometer in this hole.			
- Measure and record the mass of the copper			
block in kg.			
Measure the temperature and switch on the			

Specific Heat Capacity can be measured using the equation .

Energy = Specific Heat Capacity x Temperature Rise x Mass

Rearrange this formula to find:
Specific Heat Capacity =

What are the units for Specific Heat Capacity?

Calculate the following:

1. What is the specific heat capacity if the temperature rise is $5^{\circ} \mathrm{C}$ of a 1 Kg mass with 2000 J of energy?
2. What is the specific heat capacity if the temperature rise from $27^{\circ} \mathrm{C}$ to $45^{\circ} \mathrm{C}$ of a 2 Kg mass with 1000 J of energy?
3. What is the energy needed to increase the temperature from $55^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ of a 2 Kg mass and specific heat capacity?

I-V Characteristics

Organise the method used to measure the current and Voltage in various components:

- Swap the connections on the battery. Now the ammeter is connected to the negative terminal and variable resistor to the positive terminal.
- Connect the Voltmeter in parallel across the Power Supply.
- Record the readings on the ammeter and voltmeter in a suitable table.
- Connect the resistor in the circuit as shown in the diagram.
- Continue to record pairs of readings of current and potential difference with the battery reversed.
- Change the component from a resistor to a diode/lamp and repeat.
- Connect the Ammeter in series.
- Adjust the voltage of the Power Supply and record the new ammeter and voltmeter readings. Repeat this to obtain several pairs of readings.
- The readings on the ammeter and voltmeter should now be negative.

What are the variables in this experiment:

Independent:

Dependent:

Control (describe how you might keep these from affecting your experiment):

Risk Assessment:

Suggest what the risks are in this experiment. Describe what you should do to minimise them:
1.
2.

3.

Convert the following units

2. $25 \mathrm{~mA}=$
3. $770 \mathrm{~mA}=$ A
4. $5.8 \mathrm{~mA}=$

A
5. $900 \mathrm{~mA}=\ldots \ldots \ldots \ldots \ldots \ldots \ldots . .$.
6. $1 \mathrm{~mA}=\ldots \ldots \ldots \ldots \ldots \ldots . \mathrm{A}$

$$
\begin{aligned}
& \text { Help? } \\
& 1000 \mathrm{~mA}=1 \mathrm{~A}
\end{aligned}
$$

Resistance

Organise the method used to obtain results for resistance of a wire:

- Record the length of the wire, the reading on the Ammeter and the Voltmeter.
- Adjust the voltage so that it stays the same.
- Calculate and record the resistance for each length of wire using the equation:
- Change the length of the wire by a fixed amount.
- Set up the apparatus as shown in the circuit diagram.
- Repeat until you have several pairs of meter readings

$\begin{array}{l}\text { Complete the following Calculations in the table, } \\ \text { using the rearranged equations in the next box: }\end{array}$

Risk Assessment:

Suggest what the risks are in this experiment. Describe what you should do to minimise the risks.
1.
2.
3.

Calculating the Resistance of the wire at various lengths uses the following equation:

Measuring Density

Organise the method used to measure density

- Calculate and record the volumes (length, width, height).
- Record your results in a table.
- For each object measure the: length, width, height.
- Record the results.
- Calculate and record the densities (mass \div volume).
- Include columns for volume, mass, density and substance.
- Measure the mass of each object using the digital balance.

How should the method be modified for measuring the density of a liquid. Write extra instructions below:

Describe how adding sugar to water affects the density.

Mass of sugar dissolved in 0.1 Kg of water (kg)	Density $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
0.005 kg	$1000 \mathrm{~kg} / \mathrm{m}^{3}$
0.01 g	$1005 \mathrm{~kg} / \mathrm{m}^{3}$
0.015 g	$1007 \mathrm{~kg} / \mathrm{m}^{3}$
0.02 g	$1009 \mathrm{~kg} / \mathrm{m}^{3}$
0.025 g	$1012 \mathrm{~kg} / \mathrm{m}^{3}$

Mass is measured in \qquad -
Density is measured in \qquad

Plan
Without turning over (!) write a step by step plan for measuring the density of a solid.

Convert the following units

1. $500 \mathrm{~g}=$. Kg
2. $25 \mathrm{~g}=$ Kg
3. $770 \mathrm{~g}=$

Kg
4. $58 \mathrm{~g}=$ Kg
5. $10,000 \mathrm{~cm}^{3}=$... m^{3}
6. $100 \mathrm{~cm}^{3}=$ m^{3}

7. $250,000 \mathrm{~cm}^{3}=$ m^{3}
8. $100,000 \mathrm{~cm}^{3}=$ \qquad m^{3}

$$
\begin{aligned}
& \text { Help? } \\
& 1000 \mathrm{~g}=1 \mathrm{~kg} \\
& \mathrm{~g} \rightarrow \mathrm{~kg} \div 1000 \\
& \mathrm{~kg} \rightarrow \mathrm{~g} \times 1000 \\
& 1 \mathrm{~m}^{3}=1,000,000 \mathrm{~cm}^{3} \\
& \mathrm{~m}^{3} \rightarrow \mathrm{~cm}^{3} \times 1,000,000 \\
& \mathrm{~cm}^{3} \rightarrow \mathrm{~m}^{3} \div 1,000,000
\end{aligned}
$$

Calculations:

1. A solid block has dimensions of $100 \mathrm{~cm} \times 100 \mathrm{~cm} \times 100 \mathrm{~cm}$ and a mass of 500 g . Calculate it's density.
2. A solid block has dimensions of $12 \mathrm{~cm} \times 8 \mathrm{~cm} \times 5 \mathrm{~cm}$ and a mass of 500 g . Calculate it's density.
3. A solid block has dimensions of $6 \mathrm{~cm} \times 8 \mathrm{~cm} \times 4.5 \mathrm{~cm}$ and a mass of 273 g . Calculate it's density.

Exam questions

DONTT WORRY ABOUT YOUR EXAIW

IM SURETT WILCEO swumpulnaly

1. The photograph below shows a sailing boat crossing an ocean.

There is a wind turbine on the boat.
(a) The wind turbine generates electricity to charge a battery on the boat.

Name one other renewable energy resource that could be used on the boat to generate electricity.
\qquad
(b) The boat also has a generator that burns a fossil fuel.

The battery can be charged by either the wind turbine or the generator.
Give two reasons why this is useful.
1 \qquad
\qquad

2 \qquad
\qquad
(c) Explain one environmental impact of using fossil fuels to generate electricity.
\qquad
\qquad
\qquad
\qquad
(d) The kinetic energy of the boat is 81 kJ .
mass of boat $=8000 \mathrm{~kg}$
Calculate the speed of the boat.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Speed $=$ \qquad m / s
(e) As the boat passes over a wave, the gravitational potential energy of the boat increases by 19600 J .
mass of boat $=8000 \mathrm{~kg}$
gravitational field strength $=9.8 \mathrm{~N} / \mathrm{kg}$
Calculate the change in height of the centre of mass of the boat as it passes over the wave.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Change in height $=$ \qquad m
2. Ice cream is made by cooling a mixture of liquid ingredients until they freeze.
(a) Which statement describes the motion of the particles in solid ice cream?

Tick (\checkmark) one box.

They are stationary.

They move freely.

They vibrate about fixed positions.

(b) How do the kinetic energy and the potential energy of the particles change as a liquid is cooled and frozen?

Tick (\checkmark) one box.

Kinetic energy	Potential energy
Decreases	Decreases
Decreases	Does not change
Does not change	Decreases
Does not change	Does not change

The diagram below shows a bowl used for making ice cream.
The walls of the bowl contain a liquid coolant.
The bowl is cooled to $-20^{\circ} \mathrm{C}$ before the mixture is put in the bowl.
The bowl causes the mixture to cool down and freeze.

(c) Explain why the different thermal conductivities of metal and plastic are important in the design of the bowl.

Metal \qquad
\qquad
\qquad
\qquad
Plastic \qquad
\qquad
\qquad
\qquad
(d) The liquid coolant has a freezing point below $-20^{\circ} \mathrm{C}$

Explain one other property that the liquid coolant should have.
\qquad
\qquad
\qquad
\qquad
(e) The initial temperature of the mixture was $+20^{\circ} \mathrm{C}$. The mixture froze at $-1.5^{\circ} \mathrm{C}$.

A total of 165 kJ of internal energy was transferred from the mixture to cool and freeze it.
specific heat capacity of the mixture $=3500 \mathrm{~J} / \mathrm{kg}{ }^{\circ} \mathrm{C}$
specific latent heat of fusion of the mixture $=255000 \mathrm{~J} / \mathrm{kg}$
Calculate the mass of the mixture.
Give your answer to 2 significant figures.
\qquad
Mass $(2$ significant figures $)=$ \qquad kg
3. A hybrid car has an electric motor and a petrol engine.
(a) Petrol is a non-renewable energy resource.

What is meant by a non-renewable energy resource?
\qquad
\qquad
(b) The electric motor in the car is powered by a battery.

To charge the battery, the car is plugged into the mains supply at 230 V
The power used to charge the battery is 6.9 kW
Calculate the current used to charge the battery.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\text { Current }=\ldots \mathrm{A}
$$

(c) Mains electricity is an ac supply.

Explain the difference between direct and alternating potential difference.
\qquad
\qquad
\qquad
\qquad
(d) The cable used to connect the car to the mains electricity supply has a low resistance.

Explain why it is better to use a cable with a low resistance than to use a cable with a high resistance.
\qquad
\qquad
\qquad
\qquad
4. A student built a circuit using filament lamps.
(a) Sketch a current potential difference graph for a filament lamp on Figure 1

Figure 1

Figure 2 shows the circuit with two identical filament lamps.
Figure 2

(b) Compare the currents I_{1}, I_{2} and I_{3}
\qquad
\qquad
\qquad
(c) Calculate the charge that flows through the cell in 1 minute.

Each filament lamp has a power of 3 W and a resistance of 12Ω
Write any equations that you use.
Give the unit.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Charge = \qquad
Unit $=$ \qquad
(d) The student builds a different circuit.

Figure 3 shows the circuit.
Figure 3

Explain how the readings on both meters change when the environmental conditions change.
\qquad
5. Table 1 shows information about different light bulbs.

The bulbs all have the same brightness.
Table 1

Type of bulb	Input power in watts	Efficiency
Halogen	40	0.15
Compact fluorescent (CFL)	14	0.42
LED	7	0.85

(a) (i) Calculate the useful power output of the CFL bulb.
\qquad
\qquad
\qquad
Useful power output = \qquad watts
(ii) Use your answer to part (i) to calculate the waste energy produced each second by a CFL bulb.
\qquad
Waste energy per second = \qquad joules
(b) (i) A growth cabinet is used to investigate the effect of light on the rate of growth of plants.

The figure below shows a growth cabinet.

In the cabinet the factors that affect growth can be controlled.
A cooler unit is used to keep the temperature in the cabinet constant. The cooler unit is programmed to operate when the temperature rises above $20^{\circ} \mathrm{C}$.

The growth cabinet is lit using 50 halogen bulbs.
Changing from using halogen bulbs to LED bulbs would reduce the cost of running the growth cabinet.

Explain why.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) A scientist measured the rate of growth of plants for different intensities of light.

What type of graph should be drawn to present the results?
\qquad
Give a reason for your answer.
\qquad
\qquad
(c) Table 2 gives further information about both a halogen bulb and a LED bulb.

Table 2

Type of bulb	Cost to buy	Lifetime in hours	Operating cost over the lifetime of one bulb
Halogen	$£ 1.50$	2000	$£ 16.00$
LED	$£ 30.00$	48000	$£ 67.20$

A householder needs to replace a broken halogen light bulb.
Compare the cost efficiency of buying and using halogen bulbs rather than a LED bulb over a time span of 48000 hours of use.

Your comparison must include calculations.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
6. The particle model can be used to explain the properties of gases.
(a) Describe the direction of motion of the particles in a gas.
\qquad
\qquad
(b) Explain why heating a gas increases the average speed of the gas particles.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) Water can exist as either a liquid or a gas at $100^{\circ} \mathrm{C}$.

Explain why a mass of gaseous water at $100^{\circ} \mathrm{C}$ contains more energy than an equal mass of liquid water at $100^{\circ} \mathrm{C}$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(d) Water vapour is a gas. Gases change state when they cool.

The figure below shows condensation on a cold bathroom mirror.

© Dwight Eschliman/Getty Images
A volume of $2.5 \times 10^{-5} \mathrm{~m}^{3}$ of condensation forms on the mirror.
Density of water $=1000 \mathrm{~kg} / \mathrm{m}^{3}$
Specific latent heat of vaporisation of water $=2.26 \times 10^{6} \mathrm{~J} / \mathrm{kg}$.
Calculate the energy released when the condensation forms.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Energy released $=\ldots$ J
(e) Central heating boilers burn gas and use the energy released to heat water.

Modern condensing central heating boilers take advantage of the energy that is released when water condenses.

Waste water vapour produced when the water is heated in the boiler is used to preheat the cold water entering the boiler.

Give some of the arguments in favour of condensing boilers compared to older non-condensing boilers.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
7. The 'plum pudding' model of the atom was used by scientists in the early part of the 20th century to explain atomic structure.

(a) Those scientists knew that atoms contained electrons and that the electrons had a negative charge. They also knew that an atom was electrically neutral overall.

What did this allow the scientists to deduce about the 'pudding' part of the atom?
\qquad
\qquad
(b) An experiment, designed to investigate the 'plum pudding' model, involved firing alpha particles at a thin gold foil.

If the 'plum pudding' model was correct, then most of the alpha particles would go straight through the gold foil. A few would be deflected, but by less than 4°.

The results of the experiment were unexpected. Although most of the alpha particles did go straight through the gold foil, about 1 in every 8000 was deflected by more than 90°.

Why did this experiment lead to a new model of the atom, called the nuclear model, replacing the 'plum pudding' model?
\qquad
\qquad
\qquad
(c) The diagram shows the paths, \mathbf{A}, \mathbf{B} and \mathbf{C}, of three alpha particles. The total number of alpha particles deflected through each angle is also given.

(i) Using the nuclear model of the atom, explain the three paths, \mathbf{A}, \mathbf{B} and \mathbf{C}.
\qquad
A
\qquad
B \qquad
\qquad

C \qquad
\qquad
(ii) Using the nuclear model, the scientist E . Rutherford devised an equation to predict the proportion of alpha particles that would be deflected through various angles.

The results of the experiment were the same as the predictions made by Rutherford.
What was the importance of the experimental results and the predictions being the same?
\qquad
\qquad
8. According to kinetic theory, all matter is made up of small particles. The particles are constantly moving.

Diagram 1 shows how the particles may be arranged in a solid.

Diagram 1

(a) One kilogram of a gas has a much larger volume than one kilogram of a solid.

Use kinetic theory to explain why.
\qquad
(b) Diagram 2 shows the particles in a liquid. The liquid is evaporating.

Diagram 2

(i) How can you tell from Diagram 2 that the liquid is evaporating?
\qquad
\qquad
(ii) The temperature of the liquid in the container decreases as the liquid evaporates.

Use kinetic theory to explain why.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Mark schemes

1. (a) solar allow biofuel / biodiesel allow wave power
(b) sometimes there is no wind (but the battery can still be charged using the generator) allow if the generator breaks then the turbine can still generate electricity
when there is wind less fuel is burned
allow a disadvantage of burning fossil fuel
(c) carbon dioxide
increases global warming
OR
sulfur dioxide or NOx emissions (1)
increases acid rain (1)

OR

particulates or NOx emissions (1)
can harm living organisms (1)
allow increases the greenhouse effect
(d) $81 \mathrm{~kJ}=81000 \mathrm{~J}$
$81000=0.5 \times 8000 \times \mathrm{v}^{2}$
allow a correct substitution using an incorrectly/not converted value of energy
$v=\sqrt{\frac{81000}{0.5 \times 8000}}$
allow a correct re-arrangement using an incorrectly/not converted value of energy
$\mathrm{v}=4.5(\mathrm{~m} / \mathrm{s})$
allow a correct calculation using an incorrectly/not converted value of energy
(e) $19600=8000 \times 9.8 \times \Delta h$
$\Delta h=\frac{19600}{8000 \times 9.8}$
$\Delta \mathrm{h}=0.25 \mathrm{~m}$
plastic: has a low thermal conductivity
which reduces the rate of energy transfer from the surroundings (to the liquid coolant at $-20^{\circ} \mathrm{C}$) ignore references to insulation throughout
(d) a high specific heat capacity
so it can absorb a large amount of energy with only a small temperature change
(e) $165 \mathrm{~kJ}=165000 \mathrm{~J}$
$\Delta E=m \times 3500 \times 21.5$
and
$\Delta E=m \times 255000$
$165000=75250 m+255000 m$
or
$165000=330250 \mathrm{~m}$
this mark may be awarded if E is incorrectly/not converted
$m=\frac{165000}{75250+255000}$
or
this mark may be awarded if E is incorrectly/not converted

$$
\begin{aligned}
& \mathrm{m}=\frac{165000}{330250} \\
& \text { allow an answer consistent with their value of } E \\
& \mathrm{~m}=0.499621(\mathrm{~kg}) \\
& \text { this answer only } \\
& \text { If no marks awarded other than the first marking point: } \\
& \text { either } \\
& 165000=m \times 3500 \times 21.5 \text { scores } 1 \text { mark } \\
& m=2.192 \ldots \text { scores1 mark } \\
& m=2.2(\mathrm{~kg}) \text { scores } 1 \text { mark. } \\
& \text { these marks may be awarded if } E \text { is incorrectly/not } \\
& \text { converted } \\
& \text { or } \\
& 165000=m \times 255000 \text { scores } 1 \text { mark } \\
& m=0.647 \text { scores } 1 \text { mark } \\
& m=0.65 \mathrm{~kg} \text { scores } 1 \text { mark. } \\
& \text { these marks may be awarded if } E \text { is incorrectly/not } \\
& \text { converted }
\end{aligned}
$$

3. (a) an energy resource that cannot be replenished as it is used allow an energy resource that will run out ignore cannot be re-used
(b)
$6.9 \mathrm{k}(\mathrm{W})=6900(\mathrm{~W})$
$6900=230 \times 1$
allow correct substitution of an incorrectly/not converted value for power
$6900=230 \times 1$
allow correct substitution of an incorrectly/not converted value for power
$I=\frac{6900}{230}$
allow a correct transformation using an incorrectly/not converted value for power
$\mathrm{I}=30(\mathrm{~A})$
allow a correct calculation using an incorrectly/not converted value for power
(c) direct potential difference is always in the same direction
allow direct current is always in the same direction
alternating potential difference changes direction
allow alternating current changes direction
(d) lower potential difference across the cable
allow lower power/energy dissipation
it is more efficient
allow it won't get as hot

OR

(lower resistance gives) a greater current (for the same potential difference) (1) so the car battery can charge faster (1)
4. (a) a curve in the first and third quadrants only, passing through origin decreasing gradient
(b) any two from:

- $\quad l_{1}=I_{2}+l_{3}$
- $\mathrm{I}_{2}=\mathrm{I}_{3}$
- $\quad \mathrm{I}_{1}=2 \mathrm{I}_{2}$
- $\quad \mathrm{I}_{1}=2 \mathrm{I}_{3}$ allow 1 mark for each correct description given in words
(c) $3=I^{2} \times 12$

$$
I=\sqrt{\left(\frac{3}{12}\right)}
$$

$$
\mathrm{I}=0.5(\mathrm{~A})
$$

$Q=0.5 \times 60=30$
allow $Q=$
their calculated I $\times 60$
$\mathrm{Q}_{\text {total }}=60$
allow an answer that is consistent with their calculated value of I
or

$$
3=I^{2} \times 12(1)
$$

$I=\sqrt{\left(\frac{3}{12}\right)}$
$\mathrm{I}=0.5(\mathrm{~A})(1)$
$I_{\text {total }}=1.0(\mathrm{~A})(1)$ allow $I_{\text {total }}=$ their $I \times 2$
$\mathrm{Q}=1.0 \times 60=60(1)$
allow an answer that is consistent with their calculated value of I
coulombs or C
(d) Level 3: Relevant points (reasons / causes) are identified, given in detail and logically linked to form a clear account.

Level 2: Relevant points (reasons / causes) are identified, and there are attempts at logically linking. The resulting account is not fully clear.

Level 1: Points are identified and stated simply, but their relevance is not clear and there is no attempt at logical linking.

No relevant content

Indicative content

- resistance of LDR changes when light intensity changes
- when light intensity increase resistance of LDR decreases
- overall resistance of circuit decreases
- potential difference across total resistance remains unchanged
- current in ammeter increases
- potential difference across fixed resistor increases
- potential difference across LDR decreases
- reading on the voltmeter decreases
- potential difference is shared between the components in series
- the lower the resistance of the LDR the smaller the share of the potential difference
- reading on the voltmeter decreases

5. (a) (i) 5.88 (watts)
an answer of 5.9 scores 2 marks
allow 1 mark for correct substitution ie
$0.42=\frac{\text { power out }}{14}$
allow 1 mark for an answer of 0.0588 or 0.059
(ii) 8.12
allow 14 - their (a)(i) correctly calculated
(b) (i) input power / energy would be (much) less (reducing cost of running)
accept the converse
electricity is insufficient
(also) produce less waste energy / power
accept 'heat' for waste energy
(as the waste energy / power) increases temperature of the cabinet
so cooler on for less time
(ii) line graph
need to get both parts correct
accept scattergram or scatter graph
both variables are continuous
allow the data is continuous
(c) number of bulbs used-halogen=24 (LED=1)
total cost of LED $=£ 30+£ 67.20=£ 97.20$
accept a comparison of buying costs of halogen £36 and LED £30
total cost of halogen $=24 \times £ 1.50+24 \times £ 16.00=£ 420$
or
buying cost of halogen is $£ 36$ and operating cost is $£ 384$
accept a comparison of operating costs of halogen £384 and LED £67.20
allow for $\mathbf{3}$ marks the difference in total cost is $£ 322.80$ if the number 24 has not been credited
statement based on correct calculations that overall LED is cheaper
must be both buying and operating costs
an alternative way of answering is in terms of cost per hour:
buying cost per hour for LED $\left(\frac{£ 30.00}{48000}\right)=0.0625 \mathrm{p} / £ 0.000625$
buying cost per hour for halogen $=\left(\frac{£ 1.50}{2000}\right)=0.075 \mathrm{p} / £ 0.00075$
a calculation of both buying costs scores 1 mark
operating cost per hour for LED $=\left(\frac{£ 67.20}{48000}\right)=0.14 \mathrm{p} / £ 0.0014$
operating cost per hour for halogen $=\left(\frac{£ 16.00}{2000}\right)=0.8 p / £ 0.008$
a calculation of both operating costs scores 1 mark
all calculations show a correct unit
all units correct scores 1 mark
statement based on correct calculations of both buying and operating costs, that overall LED is cheaper
correct statement scores 1 mark
[12]
6. (a) random
accept in all directions
description must be of random motion
(b) heating increases the temperature of the gas
temperature is proportional to kinetic energy
if kinetic energy increases speed increases
(c) energy is needed to change the state of the water
to break the bonds
(d) $1000=\mathrm{m} / 2.5 \times 10^{-5}$
$m=2.5 \times 10^{-5} \times 1000$
$\mathrm{m}=0.025(\mathrm{~kg})$

$$
E=0.025 \times 2260000
$$

$$
E=56500(\mathrm{~J})
$$

allow 56500 (J) without working shown for 5 marks 0 marks awarded for $E=m \times L$
(e) any four from:

- because the water is preheated) the change in temperature of the water is less
- so less energy is used to heat the water $(E=m c \Delta \theta)$
- therefore they (condensing boilers) are more efficient
- so less energy is wasted
- less gas is burned to heat the same amount of water
- less waste gas $\left(\mathrm{CO}_{2}\right)$ is produced by the boiler or (because less gas is used) they are cheaper to run / save money

7. (a) has an equal amount of positive charge
(b) (experimental) results could not be explained using 'plum pudding' model or
(experimental) results did not support plum pudding model accept (experimental) results disproved plum pudding model

1

1
(c) (i) A - most of atom is empty spaceormost of atom concentrated at the centre
\mathbf{B} - nucleus is positive (so repels alpha particles) accept nucleus has the same charge as alpha

C - nucleus is very small
accept nucleus is positive if not scored for B
or
nucleus is a concentrated mass
accept nucleus has a very concentrated charge
(ii) (if predictions correct, this) supports the new model answers should be in terms of the nuclear model
accept supports his/new/nuclear theory accept proves for supports accept shows predictions/ Rutherford was correct
8. (a) there are strong forces (of attraction) between the particles in a solid accept molecules / atoms for particles throughout accept bonds for forces
(holding) the particles close together
particles in a solid are less spread out is insufficient
or
(holding) the particles in a fixed pattern / positions
but in a gas the forces between the particles are negligible accept very small / zero for negligible accept bonds for forces
so the particles spread out (to fill their container) accept particles are not close together gas particles are not in a fixed position is insufficient
(b) (i) particles are (shown) leaving (the liquid / container) accept molecules / atoms for particles throughout accept particles are escaping particles are getting further apart is insufficient
(ii) accept molecules / atoms for particles throughout accept speed / velocity for energy throughout
particles with most energy leave the (surface of the) liquid accept fastest particles leave the liquid
so the mean / average energy of the remaining particles goes down
and the lower the average energy (of the particles) the lower the temperature (of the liquid)

