MMMR and tables

Key vocabulary

<u>Mode</u> – the number which appears most often in a set of data

<u>Median</u> - the middle number when the numbers are placed in numerical order. If there are 2 numbers in the middle you add and halve to find the middle of these numbers.

<u>Mean</u> - a calculated central value which represents a set of data. To calculate the mean; add up all the value and divide by how many numbers there are.

Range - the difference between the largest and smallest value. This shows the spread of the data. The smaller the range the more consistent the data.

Average - the group name given to refer to mode, median and range. Outside of Maths, when a number is stated as the average it generally is referring to the mean.

Frequency Tables

These are a useful and clear way of displaying data

E.g. The table below shows the scores out of ten for 20 students

Mark	Tally	Frequency -	Frequency means how often
4	II	2	something occurs
5	II	2	
6	III	4	
7	##	5	This means 5 students
8	III	4	scored 7 marks in their test
9	II	2	Scored / Marks III their test
10	1	1	

Grouped Frequency Tables

These contain sorted data in groups called classes E.g. The table below shows the ages of people taking swimming

lessons

Class Interval Frequency		Total frequency will tell you the total number of people
15-25	60	taking swimming lessons
25-35	35	
35-45	22	This means 18 people who
45-55	18	took swimming lessons were
55-65	15	between the ages of 45 and
asses or class		55

Comparative Bar Charts

The table shows the number of cars sold by Kitty and George in the first four months of 2014.

	January	reutuary	march	Apr is		
Kitty	2	5	13	10		
George	4	7	9	10		
14 -		Carsa	iles			
10 to 10 8			L		Key Kitty George	The chart has a ke to make it easier to understand.
Number o						A comparative bar chart allows you to easily compare the number of cars Kitty and
	Jan	Feb	Mar	Apr		George sold each month.

Charts

Two-Way Tables

These are used to show how data falls into 2 different categories For example gender and favourite sport to watch

what is your favorite sport to watch on television?			
	Football	Basketball	Baseba
Males	40	22	15
Females	12	16	45
Total	52	38	60

A two-way table divides data into groups in rows going across and columns going down the table

Time-Series Graph

These are used to show how something changes over time. It is a line graph with time plotted along the horizontal axis For example the height of a balloon at different times

Stem and Leaf Diagrams

This shows numerical data split into a 'stem' and 'leaves'. The leaf is usually the last digit and the stem is the other digits.

Pie Charts

This is a circle divided into sectors. Each sector represents a set of data. Pie charts are excellent for displaying the most/ least popular type of something.

Scatter Graphs A scatter graph allows you to see the relationship between 2 sets of data. E.g. your height and your stride length. Correlation is used to describe a relationship between 2 variables

This is a straight line drawn through the middle of the points on a scatter graph. It should pass as near as many points as possible and represents the trend of the points.

A line of best fit can be used to predict data values within the range of data given.

This is called interpolation

It can also be used to predict data values outside the range of data given.

This is called extrapolation.

Transformation

Key vocabulary

Reflection:

A shape is reflected across a lint to create a mirror image. The shaped is flipped over.

Rotation:

Circular movement about a fixed point which turns a shape.

Translation:

Moves a shape a certain distance in a certain direction.

Enlargement:

Make a shape larger or smaller by a scale factor with a given centre.

ATHERTON Science: Electricity and Magnetism

1. Circuit symbols / components				
Cell	- -	Battery	⊣ı ⊢	
Bulb	$-\otimes$	Motor	M	
Switch	~~~	Closed switch	— 	
Ammeter	A	Voltmeter		
Resistor		Variable resistor	- <u>-</u> -	

2. Series and parallel circuits			
Series circuit	Parallel circuit		
Only one loop	More than one loop		
If a component breaks, circuit will not work	If component breaks, rest of the circuit will work		
Current is the same everywhere in the circuit	Current is shared between the different loops		
Potential difference is shared between	Potential difference is the same across		
components in the circuit	all components		
e∧ ∧ B∧ ⊗ ∧ 3∧	ev S vev S vev		

3. Power	3. Power				
Power	How much energy is transferred per second, measured in watts (W)				
Current	Is the flow of electrons around a circuit, measured in amps (A)				
Potential difference	The force that pushes the current around a circuit, measured in volts (V)				
Power rating	States how quickly an appliance uses energy				
Power can be calculated using these equations					
Power (W) = <u>Energy (i)</u> Time (s)		Power (W) = potential x current difference (V) (A)			

4. Generating electricity					
No	n-renewable ei	nergy	Renewable energy		
	nnot be replace time	d in our	Can be replaced in our lifetime		
ı	mples: fossil fu		Examples: wind, tidal wave, biomass,		
OII)	& nuclear reso	urces	solar, hydroelectric and geothermal		
		Generating elect	tricity at a power station		
1	Coal		2		
2	Chimney				
3	Steam		3		
4 Turbine		_	1		
5 Generator		E	7		
6	Boiler	111	6		
7	7 Electricity out				
Fuel is burnt		Water is heat	, ,		
underneath		and turns in			
water in the steam turns a generator			turns a generator		
boi	iler 🔽		7 7		
			Page		