Chemistry paper two

Stretch and

 challenge booklet

Exam command words

Command words are the words and phrases used in exams that tell students how they should answer a question.

The following command words are taken from Ofqual's official list of command words and their meanings that are relevant to this subject.

Calculate	Use numbers in the question to work these out.	Draw	Produce, or add a diagram.
Choose	Select from a range of alternatives.	Estimate	Give an approximate value.
Compare	Describe similarities/differences.	Use	The answer must include the information in the question.
Define	Specify the meaning of something.	Work out	Students should use numbers in the question.
Describe	Recall facts, events or process in an accurate way.	Write	Short answer, no explanation or description.
Design	Set out how something will be done.	Evaluate	Students should use the information provided as well as their own knowledge and consider evidence for or against.
Determine	Use the data provided to work out your answer.	Explain	Students should make something clear, or state reasons for something happening.
Give	Short answer only.	Identify	Name or characterise.
Label	Add words to complete a diagram, picture or graph	Justify	Use evidence from the information supplied to support your answer.
Measure	Find an item of data for a given quantity.	Name	Single word or phrase.
Plot	Mark on a graph.	Plan	Write a method.
Predict	Give a plausible outcome.	Show	Provide structured evidence to reach a conclusion.
Suggest	Apply your own knowledge.	Sketch	Draw approximately.

Scientific key words

These are keywords often used in questions. You need to be able to recognise and use them in your answers.
$\left.\begin{array}{|c|c|c|c|}\hline \text { Hypothesis } & \begin{array}{c}\text { A scientific statement that explains } \\ \text { certain facts or observations }\end{array} & \text { Anomaly } & \text { A result that does not fit the pattern } \\ \hline \text { Prediction } & \begin{array}{c}\text { This describes what you think will happen } \\ \text { in an experiment }\end{array} & \text { Accuracy } & \begin{array}{c}\text { How close the reading is to the true } \\ \text { value }\end{array} \\ \hline \begin{array}{c}\text { Independent } \\ \text { variable }\end{array} & \begin{array}{c}\text { This is the variable that is changed during } \\ \text { an investigation. There should only be } \\ \text { one of these. }\end{array} & \text { True value } & \begin{array}{c}\text { This is the real value of a measurement in } \\ \text { an experiment }\end{array} \\ \hline \begin{array}{c}\text { Dependent } \\ \text { variable }\end{array} & \begin{array}{c}\text { This is the variable that changes as a } \\ \text { result of a change in the independent } \\ \text { variable }\end{array} & \text { Precision } & \begin{array}{c}\text { This is determined by the scale on the } \\ \text { measuring apparatus e.g. a ruler marked } \\ \text { mm is more precise than one in cm }\end{array} \\ \hline \text { Control } & \begin{array}{c}\text { Variables that remain constant, to make } \\ \text { sure that an investigation is valid }\end{array} & \text { Resolution } & \begin{array}{c}\text { The smallest change that can be read } \\ \text { from a measuring device for example a } \\ \text { ruler measured in mm or cm }\end{array} \\ \hline \text { Fair test } & \begin{array}{c}\text { This is where only the independent } \\ \text { variable is changed and the others } \\ \text { controlled }\end{array} & \text { Calibration } & \begin{array}{c}\text { When we make sure that the measuring } \\ \text { apparatus is making correct readings e.g. } \\ \text { the temperature of melting ice is } 0 \\ \text { degrees Celsius }\end{array} \\ \hline \text { Valid } & \begin{array}{c}\text { The results and conclusions will be } \\ \text { this if the variables are correctly } \\ \text { controlled }\end{array} & \text { Measurement } \\ \text { error }\end{array} \begin{array}{c}\text { The difference between the real value } \\ \text { and the measured value }\end{array}\right]$

Trilogy Chemistry paper 2 Revision checklist

Also, from paper 1: Atomic structure \& periodic table, bonding and properties of different substances, quantitative chemistry,

Required practical activities

Method writing frame:

Do what? To what? How?
See example for making salts.

Making soluble salts (C5)

Chromatography (C12)

Method:

Method check:

1) Identify the two errors in the students' set up below and describe the problem each error would cause.

Error 1: \qquad

Error 2: \qquad
\qquad
\qquad

Results:

2) The student set up the expeirment again and collected these results.

a) Give three conclusions that can be made about black food colouring ($A-E$ are known food colourings).
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
b) Calculate the Rf values of all three pigments found in black food colouring. Give your answes to 1dp.

Exam questions

DON'T WORRY ABOUT YOUR EXAIW

IM SURETT WILCEO swumpulnaly

1. This question is about equilibrium.
(a) Describe how a reaction reaches equilibrium.
\qquad
\qquad
\qquad
\qquad

Nitrogen dioxide gas reacts to form dinitrogen tetraoxide gas.
The reaction is reversible.
The equation for the reaction is:

$$
2 \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})
$$

(b) Explain the effect on the equilibrium position of increasing the pressure.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) The graph below shows the change in the percentage of dinitrogen tetroxide $\left(\mathrm{N}_{2} \mathrm{O}_{4}\right)$ in the equilibrium mixture as the temperature of the equilibrium mixture is changed.

Explain the effect on the equilibrium position of increasing the temperature.
Use the graph above.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2. Sulfur dioxide $\left(\mathrm{SO}_{2}\right)$ is used to manufacture sulfuric acid.
(a) Explain why sulfur dioxide has a low boiling point.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) The equation shows one stage in the manufacture of sulfuric acid from sulfur dioxide.

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad \rightleftharpoons \quad 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

The reaction is exothermic in the forward direction.
Use Le Chatelier's Principle to predict the effect of increasing the temperature on the amount of sulfur trioxide $\left(\mathrm{SO}_{3}\right)$ produced at equilibrium.

Give a reason for your answer.
\qquad
\qquad
\qquad
\qquad
(c) Use Le Chatelier's Principle to predict the effect of increasing the pressure on the amount of sulfur trioxide $\left(\mathrm{SO}_{3}\right)$ produced at equilibrium.

Give a reason for your answer.
3. Some students were investigating the rate at which carbon dioxide gas is produced when metal carbonates react with an acid.

One student reacted 1.00 g of calcium carbonate with $50 \mathrm{~cm}^{3}$, an excess, of dilute hydrochloric acid.

The apparatus used is shown in Diagram 1.

Diagram 1

Dilute hydrochloric acid
(a) Complete the two labels for the apparatus on the diagram.
(b) The student measured the volume of gas collected every 30 seconds.

The table shows the student's results.

Time in seconds	Volume of carbon dioxide collected in $\mathbf{~ c m}^{3}$
30	104
60	198
90	221
120	232
150	238
180	240
210	240
240	

(i) Diagram 2 shows what the student saw at 60 seconds.

Diagram 2

What is the volume of gas collected?
Volume of gas = \qquad cm^{3}
(ii) Why did the volume of gas stop changing after 210 seconds?
\qquad
\qquad
(c) Another student placed a conical flask containing 1.00 g of a Group 1 carbonate $\left(\mathrm{M}_{2} \mathrm{CO}_{3}\right)$ on a balance.

He then added $50 \mathrm{~cm}^{3}$, an excess, of dilute hydrochloric acid to the flask and measured the mass of carbon dioxide given off.

The equation for the reaction is:

$$
\mathrm{M}_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \longrightarrow 2 \mathrm{MCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

The final mass of carbon dioxide given off was 0.32 g .
(i) Calculate the amount, in moles, of carbon dioxide in 0.32 g carbon dioxide.

Relative atomic masses $\left(A_{\mathrm{r}}\right): \mathrm{C}=12 ; \mathrm{O}=16$
\qquad
\qquad
\qquad
Moles of carbon dioxide $=$ \qquad moles
(ii) How many moles of the metal carbonate are needed to make this number of moles of carbon dioxide?
\qquad
\qquad
Moles of metal carbonate $=$ \qquad moles
(iii) The mass of metal carbonate used was 1.00 g .

Use this information, and your answer to part (c) (ii), to calculate the relative formula mass (M_{r}) of the metal carbonate.

If you could not answer part (c) (ii), use 0.00943 as the number of moles of metal carbonate. This is not the answer to part (c) (ii).
\qquad
\qquad
Relative formula mass $\left(M_{r}\right)$ of metal carbonate $=$ \qquad
(iv) Use your answer to part (c) (iii) to calculate the relative atomic mass $\left(A_{r}\right)$ of the metal in the metal carbonate $\left(\mathrm{M}_{2} \mathrm{CO}_{3}\right)$ and so identify the Group 1 metal in the metal carbonate.

If you could not answer part (c) (iii), use 230 as the relative formula mass of the metal carbonate. This is not the answer to part (c) (iii).

To gain full marks, you must show your working.
\qquad
\qquad
\qquad
\qquad
Relative atomic mass of metal is \qquad
Identity of metal \qquad
(d) Two other students repeated the experiment in part (c).
(i) When the first student did the experiment some acid sprayed out of the flask as the metal carbonate reacted.

Explain the effect this mistake would have on the calculated relative atomic mass of the metal.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) The second student used $100 \mathrm{~cm}^{3}$ of dilute hydrochloric acid instead of $50 \mathrm{~cm}^{3}$.

Explain the effect, if any, this mistake would have on the calculated relative atomic mass of the metal.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
4. This question is about crude oil.
(a) The table shows information about crude oil fractions.

Crude oil fraction	Number of carbon atoms	Approximate percentage (\%) in crude oil	Approximate percentage (\%) demand
Gas	$1-4$	3	4
Petrol	$5-10$	9	23
Naphtha	$8-12$	10	5
Kerosene	$9-16$	14	8
Diesel	$15-25$	16	22
Residue	$20-30+$	48	38

Explain the advantage of cracking hydrocarbons.
Give one example from the table.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(b) Ethene is a product of cracking.

Relative formula mass $\left(M_{r}\right)$ of ethene $=28$
Calculate the number of moles of ethene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ in 50.4 kg
Give your answer in standard form.
\qquad
\qquad
\qquad
\qquad
\qquad
Numbers of moles $=$ \qquad
(c) $\mathrm{C}_{21} \mathrm{H}_{44}$ can be cracked to produce ethene.

$$
\mathrm{C}_{21} \mathrm{H}_{44} \rightarrow 3 \mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{15} \mathrm{H}_{32}
$$

Relative formula mass $\left(M_{r}\right)$ of $\mathrm{C}_{21} \mathrm{H}_{44}=296$
Calculate the mass of $\mathrm{C}_{21} \mathrm{H}_{44}$ needed to produce 50.4 kg of ethene.
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\text { Mass = ___ } \mathrm{kg}
$$

5. Industries use the Earth's natural copper resources to produce useful products.

The figure below shows the world production of copper from 1900 to 2020.

(a) Describe the trend shown by the graph in the figure above.
\qquad
\qquad
\qquad
\qquad
(b) Suggest one reason for the trend in the figure above.
\qquad
\qquad
(c) Suggest one reason why the trend cannot be used to accurately predict the future world production of copper.
\qquad
\qquad
(d) High-grade copper resources are now difficult to find.

Phytomining is used to extract copper from low-grade ores.
There are five stages, $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$ and \mathbf{E}, in phytomining.
The stages are not in the correct order.

Stage A Copper compounds from ash are dissolved in acid.
Stage B Plants absorb metal compounds.
Stage C Plants are burned.
Stage D Plants are harvested.
Stage E Solution of copper compound is electrolysed.
What is the correct order of stages $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$, and \mathbf{E} ?
Tick (\checkmark) one box.

B, C, D, E, A

B, D, C, A, E

D, B, C, E, A

D, C, B, A, E
(e) Give two disadvantages of phytomining compared with traditional mining methods.

Do not refer to cost in your answer.
1 \qquad
\qquad

2 \qquad
\qquad
(f) In one year, $8.89 \times 10^{9} \mathrm{~kg}$ of copper was produced.
41.0% of this copper was produced from recycled copper.
The energy needed to produce 1 kg of copper from copper ore is 70.4 MJ .
The energy needed to produce 1 kg of recycled copper is 27.2 MJ.
Calculate the difference in energy used if all the copper was produced from recycling.
Give your answer to 3 significant figures.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Difference in energy used (3 significant figures) = MJ
6. Petroleum diesel is produced from crude oil.

Most vehicles that use petroleum diesel as fuel can also use biodiesel or a mixture of these two fuels. In the UK (in 2010) there must be 5% biodiesel in all petroleum diesel fuel.

Biodiesel is produced from plant oils such as soya. The crops used to produce biodiesel can also be used to feed humans. The benefit that biodiesel is 'carbon neutral' is outweighed by the increasing demand for crops. This increasing demand is causing forests to be burnt to provide land for crops to produce biodiesel. Only a huge fall in the price of petroleum diesel would halt the increasing use of biodiesel.

The graph shows the average percentage change in exhaust emissions from vehicles using different mixtures of petroleum diesel and biodiesel.

There is no difference in carbon dioxide emissions for all mixtures of petroleum diesel and biodiesel.

Use the information and your knowledge and understanding to evaluate the use of plant oils to produce biodiesel.

Remember to give a conclusion to your evaluation.
\qquad
7. This question is about hydrocarbons and crude oil.
(a) Hydrocarbon fuels are produced from crude oil.

Describe how crude oil is separated into fractions.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Butane is a hydrocarbon.
(b) Two equations for the combustion of butane are:

- $\quad 2 \mathrm{C}_{4} \mathrm{H}_{10}+13 \mathrm{O}_{2} \rightarrow 8 \mathrm{CO}_{2}+10 \mathrm{H}_{2} \mathrm{O}$
- $2 \mathrm{C}_{4} \mathrm{H}_{10}+5 \mathrm{O}_{2} \longrightarrow 8 \mathrm{C}+10 \mathrm{H}_{2} \mathrm{O}$

Why are different products formed?
\qquad
\qquad
\qquad
(c) One other product of the combustion of butane is carbon monoxide.

Balance the equation.

(d) Carbon dioxide is a greenhouse gas.

Describe the greenhouse effect in terms of the interaction of short and long wavelength radiation with matter.
\qquad
8. This question is about copper.
(a) Copper can be extracted by smelting copper-rich ores in a furnace.

The equation for one of the reactions in the smelting process is:

$$
\mathrm{Cu}_{2} \mathrm{~S}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{Cu}(\mathrm{~s})+\mathrm{SO}_{2}(\mathrm{~g})
$$

Explain why there would be an environmental problem if sulfur dioxide gas escaped into the atmosphere.
\qquad
\qquad
\qquad
\qquad
(b) The impure copper produced by smelting is purified by electrolysis, as shown below.

Copper atoms are oxidised at the positive electrode to Cu^{2+} ions, as shown in the half equation.

$$
\mathrm{Cu}(\mathrm{~s}) \longrightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-}
$$

(i) How does the half equation show that copper atoms are oxidised?
\qquad
\qquad
(ii) The Cu^{2+} ions are attracted to the negative electrode, where they are reduced to produce copper atoms.

Write a balanced half equation for the reaction at the negative electrode.
\qquad
(iii) Suggest a suitable electrolyte for the electrolysis.
\qquad
(c) Copper metal is used in electrical appliances.

Describe the bonding in a metal, and explain why metals conduct electricity.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(d) Soil near copper mines is often contaminated with low percentages of copper compounds.

Phytomining is a new way to extract copper compounds from soil.
Describe how copper compounds are extracted by phytomining.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(e) A compound in a copper ore has the following percentage composition by mass:
55.6% copper, 16.4% iron, 28.0% sulfur.
Calculate the empirical formula of the compound.
Relative atomic masses $\left(A_{r}\right): S=32 ; \mathrm{Fe}=56 ; \mathrm{Cu}=63.5$
You must show all of your working.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Empirical formula $=$ \qquad
9. A student investigated the mass of dissolved solids in four water samples $\mathbf{A}, \mathbf{B}, \mathbf{C}$ and \mathbf{D}.

The diagram below shows the apparatus used.

This is the method used.

1. Record the mass of a dry evaporating basin.
2. Pour $25 \mathrm{~cm}^{3}$ of water sample \mathbf{A} into the evaporating basin.
3. Place the evaporating basin on the beaker for 10 minutes.
4. Record the mass of the evaporating basin and contents.
5. Repeat steps 1 to 4 with water sample \mathbf{A} three more times.
6. Repeat steps 1 to 5 with water samples B, C and D.
(a) What type of variable is the mass of dissolved solids?

Tick (\checkmark) one box.

Categoric

Control

Dependent

Independent \square
(b) The method produced an error in the mass recorded in step 4.

Suggest what caused the error.
How could the error be avoided?
Error \qquad
\qquad
Avoided by \qquad
\qquad

Another student carried out the investigation correctly.
The table below shows the results.

Water sample	Mass of dissolved solids in g				
	Test 1	Test 2	Test 3	Test 4	Mean
A	0.22	0.23	0.20	X	0.21
B	0.03	0.08	0.02	0.03	0.04
C	0.45	0.60	0.49	0.58	0.53
D	0.80	0.91	0.79	0.86	0.84

(c) Calculate value \mathbf{X} in the table above.
\qquad
\qquad
\qquad
\qquad
$X=$ \qquad
(d) Which water sample has the greatest range of masses of dissolved solids?

Give the reason for your answer.
Water sample \qquad
Reason \qquad
\qquad
\qquad
(e) Water companies measure the volume of water used by households in cubic metres $\left(\mathrm{m}^{3}\right)$. $25 \mathrm{~cm}^{3}$ of a different water sample contained 0.016 g of dissolved solids.

Calculate the mass of dissolved solid in $1 \mathrm{~m}^{3}$ of this water sample.
$1 \mathrm{~m}^{3}=1000 \mathrm{dm}^{3}$
Give your answer in standard form.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Mass (in standard form) $=$ \qquad
10. This question is about chromatography of food colouring.
(a) Food colouring is a formulation.

What is a formulation?
\qquad
\qquad
(b) Explain how paper chromatography separates the dyes in a food colouring.

Do not give details of how to do the experiment.
\qquad
\qquad
\qquad
\qquad
(c) Explain how the student could tell from the chromatogram that the food colouring contained more than one dye.
\qquad
\qquad
\qquad
\qquad
(d) Explain how the student could use chromatography to identify unknown dyes in the food colouring.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Mark schemes

1. (a) when a reversible reaction occurs in apparatus which prevents the escape of reactants and products

> allow when a reversible reaction occurs in a sealed system
(equilibrium is reached) when the forward and reverse reactions occur at (exactly) the same rate
(b) (as pressure increases) the equilibrium position shifts to the right hand side allow (as pressure increases) the percentage of product / dinitrogen tetroxide / $\mathrm{N}_{2} \mathrm{O}_{4}$ increases
(because) there are less moles / molecules (of dinitrogen tetroxide) on right hand side allow (because) there are more moles / molecules (of nitrogen dioxide) on left hand side
(c) (as temperature increases) equilibrium position shifts to left hand side
(because the forward) reaction is exothermic
or
(because) the backward reaction is endothermic
(so) the percentage of product / dinitrogen tetroxide / $\mathrm{N}_{2} \mathrm{O}_{4}$ decreases
(so) only a small amount of energy is needed to separate the molecules any reference to bonds being weak or being broken negates the second and third mark unless they are stated to be intermolecular bonds or bonds between molecules
because the equilibrium shifts in the endothermic direction
allow reverse reaction favoured if forward reaction is exothermic
(c) increases
(b) decreases
because there are more molecules of gas on the left-hand side or converse
3. (a) left hand: (conical) flask do not accept round bottomed flask or container which is not a flask
right hand: beaker / trough
accept plastic box
(b) (i) 157
(ii) all calcium carbonate used up or reaction stopped do not accept all acid used up
(c) (i) $0.007(272727 \ldots)$
correct answer with or without working gains 2 marks if answer incorrect, allow (0.32 / 44) for 1 mark
(ii) $0.007(272727 \ldots)$
allow ecf from (c)(i)
(iii) $\left(M_{r}=\right.$ mass $/$ moles $\left.=1 / 0.00727 \ldots\right)=137.5$ or 138
allow ecf from (c)(ii)
if use 0.00943 moles then $=106$
if use 0.007 allow 143 (142.857)
(iv) $\quad(138)-60(=78)$

23/85
$(78 / 2)=39$
potassium
sodium / rubidium
identity of metal ecf on A_{r}, but must be Group 1
If no working max 1 mark
(d) (i) (relative atomic mass) would decrease
because the mass lost greater
so moles carbon dioxide larger or moles metal carbonate greater
(ii) no change
because the acid (already) in excess
so the amount carbon dioxide lost is the same
1

1

1
[17]
4. (a) break large molecules into small molecules
to satisfy demand
example
(b) $50.4 \mathrm{~kg}=50400 \mathrm{~g}$

50 400/28
1.8×10^{3}
(c) $1.8 / 3=0.6$
0.6×296
$=177.6 \mathrm{~kg}$
5. (a) production of copper is increasing
at an increasing rate
1
(b) increase in population / demand
allow more uses for copper
(c) any one from:

- more use of recycling
- copper is a finite resource and may run out
- alternative metals may be used in future

ignore only an estimate

(d) B, D, C, A, E
(e) any two from:

- (phytomining is) slower to produce copper
ignore reference to cost
ignore references to carbon dioxide
ignore references to global warming allow plants grow slowly
- large area of land required
- insufficient yield to meet demand
(f) (energy use through recycling $=$
$\left.27.2 \times 8.89 \times 10^{9} \times \frac{41}{100}\right)$
$=9.914 \times 10^{10}$
(energy use through extraction $=$
$70.4 \times 8.89 \times 10^{9} \times \frac{59}{100}$)
$=3.693 \times 10^{11}$
(total consumption today $=$
$9.914 \times 10^{10}+3.693 \times 10^{11}$)
$=4.6844 \times 10^{11}$
allow correct use of an incorrect energy use determined in MP1 and/or MP2
(energy use if only recycling used $=27.2 \times 8.89 \times 10^{9}$)
$=2.418 \times 10^{11}$
(energy saving =
$4.6844 \times 10^{11}-2.418 \times 10^{11}$)
$=2.27 \times 10^{11}(\mathrm{MJ})$
allow an answer correctly calculated to 3 significant figures which uses the values in the question

6.

any four from:
to gain 4 marks both pros and cons should be given

Arguments for biodiesel

max three from:

- sustainable / renewable
- (carbon neutral) absorbs CO_{2} when growing / during photosynthesis
- burning biodiesel produces low amounts particulates / carbon monoxide
allow burning biodiesel produces little / low amount of global
dimming
ignore sulfur dioxide
- can use waste vegetable oils / fats (from food industry) or can use waste plant material
- can be used to conserve crude oil (instead of / mixed with petroleum diesel)
- produced by a low energy / temperature process
accept produced by a low tech process
- biodegrades (easily)
ignore engine effects

Arguments against biodiesel

max three from:

- creates food shortages
accept price of food increases
- deforestation to plant more crops leads to loss of habitat / biodiversity or deforestation leads to a reduction in absorption of CO_{2}
allow burning trees increases CO_{2}
allow deforestation increases global warming
- burning biodiesel produces high amounts of nitrogen oxides
allow increases acid rain
- crops takes time to grow
allow crops can fail
- vast areas of land needed to grow crops
conclusion supported by the argument presented, which must give added value to the points for and against given above

7. (a)
maximum of $\mathbf{3}$ marks if incorrect reference made to cracking ignore fractional distillation
ignore fracking
heat or vaporise (oil)
1
temperature gradient in column
allow column is cooler at the top
or
allow column is hotter at the bottom
(vapour) condenses (into fractions)
depending on boiling point of fraction
allow at different levels
(b) different amounts of oxygen available
allow complete combustion and incomplete / partial combustion
(c) $2 \mathrm{C}_{4} \mathrm{H}_{10}+9 \mathrm{O}_{2} \longrightarrow 8 \mathrm{CO}+10 \mathrm{H}_{2} \mathrm{O}$
allow correct multiples / halves
(d) short wavelength radiation which enters the atmosphere
because uv / ultra violet radiation which enters the atmosphere
is absorbed by materials and re-emitted
as a longer wavelength radiation
as ir / infrared radiation
(the longer wavelength radiation is trapped by) a greenhouse gas / carbon dioxide / methane which stops radiation escaping (from the atmosphere)
allow so temperature increases
8. (a) because sulfur dioxide causes acid rain
which kills fish / aquatic life or dissolves / damages statues / stonework or kills / stunts growth of trees
if no other mark awarded then award 1 mark for sulfur dioxide is toxic or causes breathing difficulties.
(b) (i) electrons are lost
(ii) $\mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}$
allow $\mathrm{Cu}^{2+} \rightarrow \mathrm{Cu}-2 e^{-}$
ignore state symbols
(iii) copper sulfate
allow any ionic copper compound
1
(c) (lattice of) positive ions
delocalised electrons
accept sea of electrons
(electrostatic) attraction between the positive ions and the electrons
electrons can move through the metal / structure or can flow
allow electrons can carry charge through the metal / structure if wrong bonding named or described or attraction between oppositely charged ions then do not award M1 or M3 - MAX 2
(d) (copper compounds are absorbed / taken up by) plants allow crops
which are burned
the ash contains the copper compounds
do not award M3 if the ash contains copper (metal)
(e)

$/ A_{r}$	$55.6 / 63.5$	$16.4 / 56$	$28.0 / 32$
moles	0.876	0.293	0.875
ratio	3	1	3
formula	$\mathrm{Cu}_{3} \mathrm{FeS}_{3}$		

award 4 marks for $\mathrm{Cu}_{3} \mathrm{FeS}_{3}$ with some correct working award 3 marks for $\mathrm{Cu}_{3} \mathrm{FeS}_{3}$ with no working
if the answer is not $\mathrm{Cu}_{3} \mathrm{FeS}_{3}$ award up to $\mathbf{3}$ marks for correct steps from the table apply ecf
if the student has inverted the fractions award $\mathbf{3}$ marks for an answer of $\mathrm{CuFe}_{3} \mathrm{~S}$
9.
(a) dependent
(b) not all water had been removed from the sample allow description of process
heat to constant mass

alternative approach:

mass included (droplets of) water on the bottom of the evaporating basin (1)
allow bottom of evaporating basin was wet
ignore spillages
ignore weighing errors
dry the bottom of the evaporating basin (1)
allow wipe off droplets
(c)

$$
\frac{0.22+0.23+0.20+X}{4}=0.21
$$

$$
(\mathbf{X}=) 0.19(\mathrm{~g})
$$

(d) \mathbf{C}
allow ecf from question (c)
biggest difference between the maximum and minimum values
allow calculated range if all ranges are shown A 0.04; B 0.06; C 0.15 and $\boldsymbol{D} 0.12$
(e) (conversion m^{3} to cm^{3}) $1 \mathrm{~m}^{3}=1 \times 10^{6} \mathrm{~cm}^{3}$
(mass $=$) $1 \times 10^{6} \times \frac{0.016}{25}$
allow correct use of an incorrect / no conversion value
$=640(\mathrm{~g})$
$=6.4 \times 10^{2}(\mathrm{~g})$
allow a correctly calculated answer in standard form from an incorrect calculation of mass
10. (a) a mixture designed as a useful product
(b) dyes distributed differently between the stationary and mobile phase allow dyes have different solubilities
allow dyes have different forces of attraction for stationary phase allow dyes have different forces of attraction for mobile phase allow dyes have different forces of attraction to the paper allow dyes have different forces of attraction to the solvent ignore density
(so dyes) move up the paper at different speeds / rates allow (so dyes) move different distances up the paper ignore references to time
(c) (because chromatogram has) different dots / colours
in a (vertical) column
allow above the (original) spot
(d) run known dyes and food colouring (as a chromatogram)
compare distances moved
or
compare R_{f} values
(so) can identify those that move the same distance as known dyes allow (so) can identify those that move different distances as unknown dyes
or
(so) can identify those that have the same R_{f} values as known dyes allow (so) can identify those that have different R_{f} values as unknown dyes

