Chemistry paper one

<u>Stretch and</u> challenge booklet

Exam command words

Command words are the words and phrases used in exams that tell students how they should answer a question.

The following command words are taken from Ofqual's official list of command words and their meanings that are relevant to this subject.

Calculate	Use numbers in the question to work these out.	Draw	Produce, or add a diagram.			
Choose	Select from a range of alternatives.	Estimate	Give an approximate value.			
Compare	Describe similarities/differences.	Use	The answer must include the information in the question.			
Define	Specify the meaning of something.	Work out	Students should use numbers in the question.			
Describe	Recall facts, events or process in an accurate way.	Write	Short answer, no explanation or description.			
Design	Set out how something will be done.	Evaluate	Students should use the information provided as well as their own knowledge and consider evidence for or against.			
Determine	Use the data provided to work out your answer.	Explain	Students should make something clear, or state reasons for something happening.			
Give	Short answer only.	Identify	Name or characterise.			
Label	Add words to complete a diagram, picture or graph	Justify	Use evidence from the information supplied to support your answer.			
Measure	Find an item of data for a given quantity.	Name	Single word or phrase.			
Plot	Mark on a graph.	Plan	Write a method.			
Predict	Predict Give a plausible outcome.		Provide structured evidence to reach a conclusion.			
Suggest	Apply your own knowledge.	Sketch	Draw approximately.			

Scientific key words

These are keywords often used in questions. You need to be able to recognise and use them in your answers.

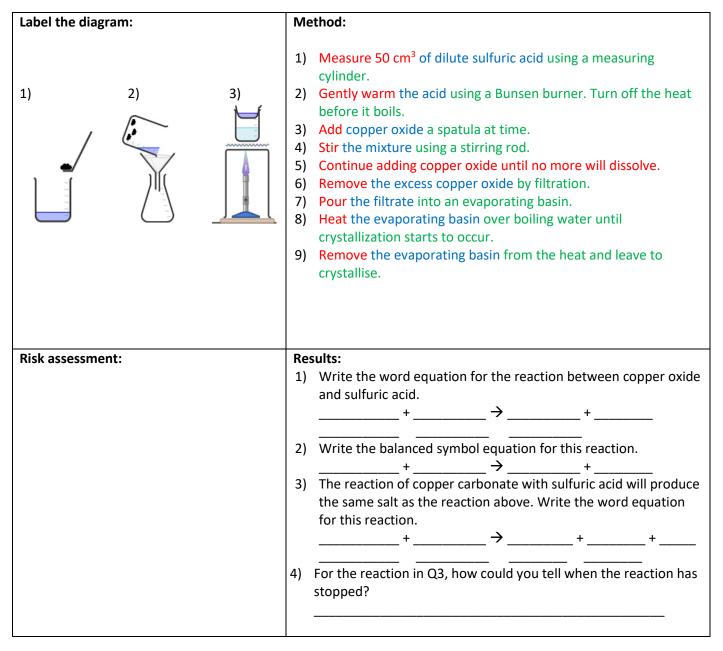
Hypothesis	A scientific statement that explains certain facts or observations	Anomaly	A result that does not fit the pattern
Prediction	This describes what you think will happen in an experiment	Accuracy	How close the reading is to the true value
Independent variable	This is the variable that is changed during an investigation. There should only be one of these.	True value	This is the real value of a measurement in an experiment
Dependent variable	This is the variable that changes as a result of a change in the independent variable	Precision	This is determined by the scale on the measuring apparatus e.g. a ruler marked mm is more precise than one in cm
Control variable	Variables that remain constant, to make sure that an investigation is valid	Resolution	The smallest change that can be read from a measuring device for example a ruler measured in mm or cm
Fair test	This is where only the independent variable is changed and the others controlled	Calibration	When we make sure that the measuring apparatus is making correct readings e.g. the temperature of melting ice is 0 degrees Celsius
Valid	The results and conclusions will be this if the variables are correctly controlled	Measurement error	The difference between the real value and the measured value
Categoric variable	A variable that can be described by a label or category such as colour or surface	Random error	This error causes measurements to be spread around the true value – can be reduced by taking repeats and calculating a mean
Continuous variable	A variable which can have any numerical value	Zero error	When a piece of measuring equipment should be reading zero but it doesn't
Interval	This is the difference between the values of your independent variable	Systematic error	This is an error that is always the same for each repeat – usually because of an error in the equipment used
Range	The maximum and minimum values of the independent or dependent variables e.g. 'from 10cm to 50cm'	Uncertainty	When the results obtained are not as accurate as they could be due to the procedure carried out
Data	Information or measurements that you collect	Repeatable	If the same person can get the same reading using the same equipment and method
Datum	One piece of information	Reproducible	If another person can get the same result (trend/specific results) using the same method and equipment or with different method or equipment.

Chemistry Paper 1 Revision checklist

Atomic Structure & the Periodic Table	
Describe the structure of an atom and calculate numbers of protons, neutrons and electrons given a	
periodic table	
Describe the development of the nuclear model of the atom from earlier models – e.g the plum	
pudding	
Describe how mixtures can be separated using filtration, evaporation, distillation and	
chromatography	
Compare the size of atoms to other items	
Explain what is meant by an isotope and calculate the Atomic mass of an element given the	
percentage abundance of its isotopes	
Draw the electron configuration for any of the first 20 elements in the periodic table.	
Describe some of the store is the development of the Devia dis Table	
Describe some of the steps in the development of the Periodic Table	
Describe how atoms become ions and represent this using diagrams	
Explain why group 0 do not form ions and describe the properties of group 0 elements	
Describe the properties of the Group 1 metals and their reactions with oxygen and water	
Describe the properties of the Group I metals and their reactions with oxygen and water	
Explain why Group 1 reactivity increases going down the group	
Describe the properties of group 7 elements.	
Describe and explain the trend in reactivity of group 7 down the group	
Interpret practical observations to prove reactivity in group 7 – ie displacement of less reactive	
halogens	
Bonding & Properties	
Describe the particle arrangement in solids, liquids and gases and explain how changes of state occur	
Describe the formation of ionic bonds between metal and non-metal atoms and represent this in	
diagrams and models	
Use dot and cross diagrams to show the transfer of electrons in ionic bonding	
Describe the properties of ionic compounds	
Represent covalent bonds using dot and cross diagrams	
Describe the properties of simple and giant covalent substances	
Describe the structure and bonding of carbon in the forms of diamond, graphite and fullerenes and	
relate their properties to the bonding	
Represent the bonding in polymers using diagrams and explain why most polymers are solids at room	
temperature	
Describe the bonding in metals and relate the properties of metals to the bonding	

Quantitative Chemistry	
Explain what is meant by 'conservation of mass' and apply it to chemical equations	
Calculate relative formula mass	
Know that a mole represents 6.02 x 10 ²³ atoms or molecules and is equal to the atomic or formula mass in grams	
Use the equation Mass = Mr x moles to work out number of moles, mass or formula mass, given the other two	
Calculate the mass of reactants and products in a symbol equation and use these to predict the masses of reactants needed or products expected	
Use moles to balance symbol equations	
Calculate the mass of a given solid in a specified volume of a solution of a given concentration	
Chemical Change	
Define the terms oxidation and reduction in terms of reactions with oxygen	
Identify which substances have been oxidised or reduced in a given equation in terms of gain or loss of oxygen	
Evaluate metal extraction methods given appropriate information	
Describe the reactions of K, Na, Li, Ca, Mg, Zn, Fe and Cu with dilute acids and water	
Derive the reactivity series for metals given information about displacement reactions	
Explain reactivity in terms of a metal's tendency to form ions	
Identify which species has been oxidised and which has been reduced in terms of gain or loss of	
electrons in given equations	
Write half equations for oxidation and reduction	
Describe the test for hydrogen gas	
Describe the formation of a soluble salt by neutralising acids with metal oxides or metal carbonates	
Describe the reactions of acids and alkalis and the use of indicators	
Explain the meaning of the terms 'strong' and 'weak' acids	
Explain the process of electrolysis in terms of movement of ions to the electrodes and the loss or gain of electrons	
Describe the extraction of Aluminium from its oxide using electrolysis	
Predict the products from the electrolysis of solutions and explain why hydrogen is often given off at	
the cathode Energy Changes	
Describe and recognise exothermic and endothermic reactions	
Describe some of the variables that can affect temperature change in endothermic and exothermic reactions	
Use bond energies to determine whether a reaction will be endothermic or exothermic	

Required practical activities



Do what? To what? How?

See example for making salts.

Making soluble salts (C5)

Diagram:	Independent variable: Dependent variable: Control variable(s): Method: 1) Pour 50 cm ³ of electrolyte solution into a beaker. 2)
Risk assessment:	Results: 1) Describe how you could determine if the gas produced at the anode is chloride.
	the cathode is hydrogen.
	 3) Predict the products when a molten solution of iron chloride is electrolysed. Anode: Cathode:
	 4) Predict the products when an aqueous solution of sodium sulfate is electrolysed. Anode: Cathode:
	 5) Predict the products when an aqueous solution of copper bromide is electrolysed. Anode: Cathode:

abel the diagra	am:			Inde Dep Con Met	en tro	den I va	t va	rial	ole:	::									
/lethod (cont):				Res															
				3)	Pl	ot a	a gr	aph	usin	g th	e res	ults.							
Results:																			
Total	М	aximum temp	o (°C)																
volume of NaOH added (cm ³)	First trial	Second trial	Mean																
0	25	25																	
5	27	28																	
10	30	30																	
15	32	28																	
20	34	35																	
25	36	36																	
30	36	36																	
35	34	35																	
40	34	34		4)							twee	n 0 a	nd 2	25 cm	n³ of	fsod	ium	۱	
Suggest w 	hat could	ly in the resi		5)	 E>		in t		esul		ter 2	25 cm	n³ of	sodiu	um	hydr	oxi		 was
•	ure for ea	ch volume c	f sodium																

Exam questions

DON'T WORRY ABOUT YOUR EXAM

I'M SURE IT WILL GO Swimmingly

This question is about elements.

1.

Caesium is in Group 1 of the periodic table.

(a) Explain what happens to caesium atoms and to oxygen atoms when caesium reacts with oxygen to produce caesium oxide.

You should answer in terms of electrons.

(b) Explain why caesium is more reactive than sodium.

You should answer in terms of electrons.

(4)

(c) The diagram below shows part of Mendeleev's periodic table.

16	19
O	F
32	35.5
S	CI
79	80
Se	Br
128	127
Te	I

Explain why the early periodic tables placed iodine (I) before tellurium (Te), but then Mendeleev placed tellurium before iodine.

(3) (Total 11 marks)

2.

This question is about elements in the periodic table.

(a) What order did scientists use to arrange elements in early periodic tables?

(1)

(b) In the early periodic tables some elements were placed in the wrong groups.

Mendeleev overcame this in his periodic table.

Give one way Mendeleev did this.

(1)

The table shows the boiling points of fluorine, chlorine and bromine.

Element	Boiling point in °C
Fluorine	-186
Chlorine	-34
Bromine	+59

(c) Explain why the boiling points in the table are low.

(d) Explain the trend in the boiling points in the table above.

(e) Explain why neon is unreactive.

Give the electronic structure of neon in your answer.

(2)

(3)

(2)

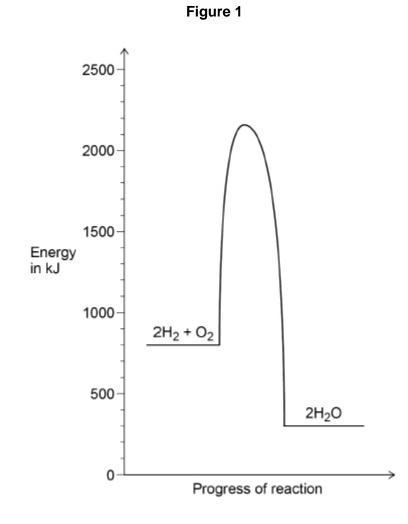
(f) How many atoms are there in 1 g of argon?

The Avogadro constant is 6.02×10^{23} per mole.

Relative atomic mass (A_r): Ar = 40

Number of atoms in 1 g = _____

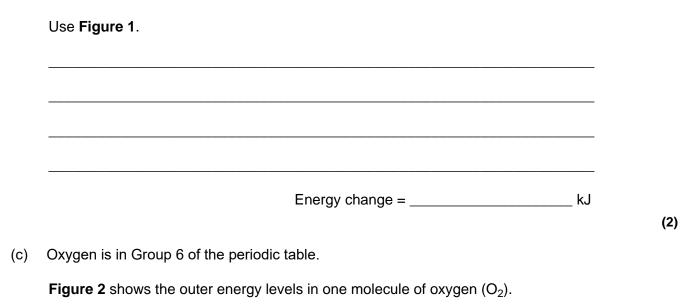
(2) (Total 11 marks)



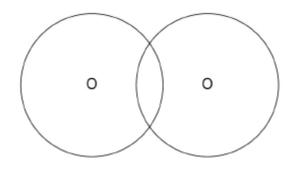
This question is about oxygen.

(a) Hydrogen reacts with oxygen.

$$2 \operatorname{H}_{2}(g) + \operatorname{O}_{2}(g) \longrightarrow 2 \operatorname{H}_{2}\operatorname{O}(g)$$


Figure 1 shows the relative energies of the reactants and products at a certain temperature.

Label the activation energy on Figure 1.


(1)

(b) Determine the overall energy change for the reaction between hydrogen and oxygen shown in part (a).

Draw the electrons in the outer energy levels in Figure 2.

Figure 2

(2)

(d) The equation shows the decomposition of hydrogen peroxide.

 $2 H - O - O - H \rightarrow 2 H - O - H + O = O$

The table shows the bond energies.

Bond	0–0	0=0	O–H
Bond dissociation energy in kJ per mole	138	496	463

Calculate the overall energy change for the reaction.

Energy change = _____ kJ

(3) (Total 8 marks)

Carbon can exist in a number of different structures.

(a) The first fullerene to be discovered was Buckminsterfullerene.

What is the formula of Buckminsterfullerene?

Tick (✓) **one** box.

4.

C40

(b) Graphite is a form of carbon.

Explain why graphite conducts electricity.

Steel is an alloy of iron and carbon.

(c) Explain why steel is harder than iron.

(3)

(2)

(d) Iron is alloyed with carbon and other metals to make stainless steel.

A stainless steel fork contains 71.92% iron.

The table below shows the mass of each element in the fork.

Element	Iron	Carbon	Chromium	Nickel
Mass of element in g	х	0.05	10.44	5.80

Calculate the mass of iron (X) in the fork.

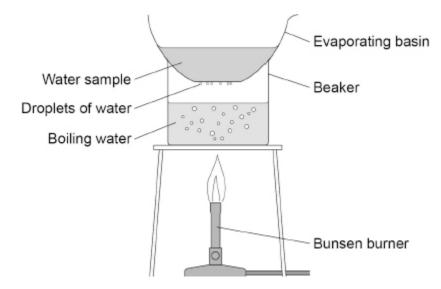
5.

This question is about compounds.

(a) The table gives information about the solubility of some compounds.

Soluble compounds
All potassium and sodium salts
All nitrates
Chlorides, bromides and iodides, except those of silver and lead

Use information from the table to answer these questions.


(i) Name a soluble compound that contains silver ions.

(1)

(ii) Name a soluble compound that contains carbonate ions.

(b)		al oxides react with acids to make salts. It type of compound is a metal oxide?	
(c)	Leac (i)	d nitrate solution is produced by reacting lead oxide with nitric acid. State how solid lead nitrate can be obtained from lead nitrate solution.	(1
			(1
	(ii)	Balance the equation for the reaction.	
		PbO + $HNO_3 \longrightarrow Pb(NO_3)_2 + H_2O$	(1)
	(iii)	Give the total number of atoms in the formula $Pb(NO_3)_2$	
(d)	oxyg	oxide of lead that does not have the formula PbO contains 6.21 g of lead and 0.72 gen. sulate the empirical formula of this lead oxide.	(1) 2 g of
		tive atomic masses (A_r): O = 16; Pb = 207 must show your working to gain full marks.	
		Empirical formula =	
			(4) al 10 marks)

The diagram below shows the apparatus used.

This is the method used.

6.

- 1. Record the mass of a dry evaporating basin.
- 2. Pour 25 cm^3 of water sample **A** into the evaporating basin.
- 3. Place the evaporating basin on the beaker for 10 minutes.
- 4. Record the mass of the evaporating basin and contents.
- 5. Repeat steps 1 to 4 with water sample **A** three more times.
- 6. Repeat steps 1 to 5 with water samples **B**, **C** and **D**.
- (a) What type of variable is the mass of dissolved solids?

Tick (\checkmark) one box.

Categoric	
Control	
Dependent	
Independent	

(1)

(b) The method produced an error in the mass recorded in step 4.

Suggest what caused the error.
How could the error be avoided?
Error
Avoided by

Another student carried out the investigation correctly.

The table below shows the results.

Water sample	Mass of dissolved solids in g				
	Test 1	Test 2	Test 3	Test 4	Mean
A	0.22	0.23	0.20	Х	0.21
В	0.03	0.08	0.02	0.03	0.04
С	0.45	0.60	0.49	0.58	0.53
D	0.80	0.91	0.79	0.86	0.84

(c) Calculate value **X** in the table above.

X = _____ g

(2)

(2)

(d) Which water sample has the greatest range of masses of dissolved solids?
--

which water sample has the greatest range of masses of dissolved solids:	
Give the reason for your answer.	
Water sample	
Reason	
	-
	-
	(2
Water companies measure the volume of water used by households in cubic metres	(m ³).
25 cm ³ of a different water sample contained 0.016 g of dissolved solids.	
Calculate the mass of dissolved solid in 1 m ³ of this water sample.	
$1 \text{ m}^3 = 1000 \text{ dm}^3$	
Give your answer in standard form.	
	-
	-
	-
	-
	-
	-
	-
	-
Mass (in standard form) = g	(4
(To	4) otal 11 marks

This question is about the electrolysis of aqueous solutions.

(e)

7.

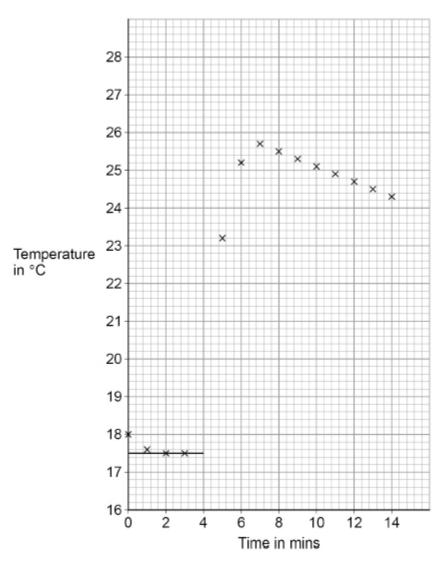
Hydrogen gas and chlorine gas are produced when sodium chloride solution is electrolysed.

(a) Hydrogen ions (H⁺) are attracted to the negative electrode.

The half equation for the reaction at the negative electrode is:

Vhat type of reaction happens at the negative electrode?	
Sive the reason for your answer.	
ype of reaction	
leason	
chloride ions are attracted to the positive electrode.	
Complete the half equation for the production of chlorine gas (Cl_2) .	
$__Cl^- \rightarrow __+ __$	
ydrogen gas and oxygen gas are produced when sodium sulfate solution is electro	olysed.
explain how oxygen gas is produced in the electrolysis of sodium sulfate solution.	

(Total 8 marks)


This is the method used.

8.

- 1. Pour 30 cm³ of copper sulfate solution into a polystyrene cup.
- 2. Measure the temperature of copper sulfate solution every minute for 3 minutes.
- 3. Add magnesium on the fourth minute.
- 4. Measure the temperature of the mixture at 5 minutes and then every minute up to 14 minutes.
- (a) What is the dependent variable in this investigation?

The student used the results to plot a graph.

The image below shows the graph.

(1)

(b) Suggest why the copper sulfate solution was left for four minutes before adding the magnesium.

Com •	plete the graph above by: drawing a line of best fit through all the points after 7 minutes extending the line back to 4 minutes.
	temperature change for the reaction is the temperature difference between the two h lines at 4 minutes.
Dete	ermine the temperature change for the reaction.
Use	the graph above.
	Temperature change = °C
Expl	ain why the temperature of the mixture decreases after 7 minutes.
The	student repeated the experiment with an unknown metal ${f Q}$ instead of magnesium.
All th	ne other variables were kept the same.
The	student recorded a smaller temperature change.
Sug	gest the identity of metal Q .
Give	one reason for your answer.
Meta	al Q

(g) A copper sulfate solution contained 0.100 moles of copper sulfate dissolved in 0.500 dm³ of water.

Calculate the mass of copper sulfate in 30.0 cm³ of this solution.

Relative formula mass (M_r): CuSO₄ = 159.5

Mass =	g
	(4)
	(Total 14 marks)

Mark schemes

1.	(a)	caesium atom loses one electron	1
		(and) oxygen atom gains two electrons	
		(so) two caesium atoms react with one oxygen atom	1
		allow (to produce) Cs ₂ O	
		max 3 marks if reference to incorrect particles / bonding / structure	1
		any one from:	
		• (to form) Cs ⁺ and O^{2-}	
		(to form) caesium ion(s) and oxide ion(s)	
		(to form) ions with full outer shells / levels	
			1
	(b)	(caesium has) more energy levels	
	()	or	
		(caesium has) more shells	
		allow converse for sodium	
			1
		(so the) outer electron / shell is further from nucleus	
		or	
		outer electron / shell is more shielded	
			1
		(ap) weaker attraction between puelous and outer electron (shell	
		(so) weaker attraction between nucleus and outer electron / shell	1
		(so) outer electron is more easily lost	
		allow (so) less energy needed to remove outer electron	
			1
	(c)	early periodic tables were arranged with elements in order of their atomic weights	
	()	ignore atomic mass	
		ignore atomic made	1
		iodine has a lower atomic weight than tellurium	
		allow converse for tellurium	
			1
		(so) Mendeleev placed iodine with elements with same / similar properties	
		allow F / Cl / Br for elements	
		or	
		(so) Mendeleev placed tellurium with elements with same / similar properties	
		allow O / S / Se for elements	
			1

[11]

- 2.
- (a) atomic weight

do **not** accept atomic mass or A_r

(b) left gaps / spaces

or

changed the order based on atomic weights allow placed them in correct groups according to properties do **not** accept reference to atomic number

(d)

allow converse explanation in terms of boiling point

(the) molecules get larger going down the group

intermolecular bonds ignore less energy

(so the) forces <u>between the molecules</u> increase **or** (so the) intermolecular forces increase

 (so the) boiling points increase going down the group
 or
 (so the) boiling points increase with increasing relative atomic mass allow (so) more energy is needed to separate the molecules

1

1

1

1

1

1

1

(e) 2,8

(so) stable arrangement of electronsor(so) full outer shell

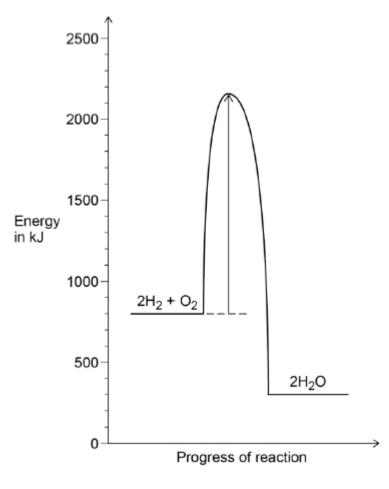
(f)

$$\frac{1}{40} \times 6.02 \times 10^{23}$$

or
 $0.025 \times 6.02 \times 10^{23}$

1.51 × 10²²

[11]


1

1

1

1

(a) line from reactants to top of curve (i.e. from 800 to 2160)

ignore arrowheads

1

(b) reads levels of reactants (800 kJ) and products (300 kJ)

```
(800 - 300) = 500 (kJ)
```

allow correct subtraction of one incorrect value determined for the energy change

an answer of (-) 500 (kJ) scores 2 marks ignore sign

(c)

allow combination of circles, dots, crosses or $e^{(-)}$

two shared pairs in overlap

1

1

1

1

1

1

all non-bonding electrons in outer shell (4 electrons on each O atom)

ignore any inner shell electrons

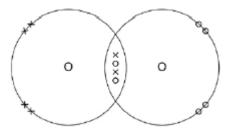


diagram scores 2 marks

(d) (bonds broken) ((4 × 463) + (2 × 138) =) **2128**

> (bonds made) ((4 × 463) + (496) =) **2348**

(energy change = bonds broken – bonds made) (2128 – 2348 =) (–) **220** (kJ)

ignore energy change sign
allow correct calculation using incorrect values from step 1 and/or
step 2

alternative approach:

(bonds broken) (2 × (O–O) = (2 × 138) =) **276** (1)

(bonds made) (1 × (O=O) =) **496**(1)

4.

(energy change = bonds broken – bonds made) (276 – 496 =) (–) **220** (kJ) (1) *an answer of (–) 220 (kJ) scores* **3** *marks an incorrect answer for one step does* **not** *prevent allocation of marks for subsequent steps*

(a) C₆₀ 1 (graphite has) delocalised electrons (b) 1 (so the delocalised electrons) carry electrical charge through the structure allow (so the delocalised electrons) move through the structure 1 carbon atoms have different sizes to iron atoms / ions (c) 1 (so carbon atoms) distort the layers of iron atoms / ions 1 (therefore) the layers cannot slide 1

1

[8]

(d)	(percentage and mass of other elements) 28.08 (%) = 16.29 (g)	
	20.00 (70) 10.20 (g)	1
	(mass of fork) = $\frac{16.29}{28.08} \times 100$ (g)	
		1
	= 58.01 (g)	1
	(mass of iron = $\frac{71.92}{100} \times 58.01$) 71.92	
	allow (mass of fork – mass of other elements) = 41.72 (g)	
	allow 41.7 (g)	
	allow correct use of incorrect calculation of mass and / or percentages	
		1 [10]
(a)	(i) silver nitrate	
	allow AgNO ₃	1
	(ii) potassium carbonate or allow K ₂ CO ₃	
	sodium carbonate	
	allow Na ₂ CO ₃	
(h)	haaa	1
(b)	base allow ionic	
	ignore insoluble or soluble	
	ignore alkali	1

5.

(c)	or	porate stallise	
	ory	allow heat or boil or leave (to evaporate) allow cool	
		ignore filtration unless given as an alternative do not accept freeze or solidify	
	(;;)		1
	(ii) 2 (H	INO ₃) accept multiples	1
	(iii) 9		
		accept nine	1
(d)	6.21 / 207	7 0.72 / 16 1 mark for dividing mass by A _r	1
	= 0.03	= 0.045	1
		1 mark for correct proportions (allow multiples)	1
	2	3	
		1 mark for correct whole number ratio (allow multiples). Can be awarded from formula.	
	Pb ₂ O ₃		1
		allow O_3Pb_2	
		ecf allowed throughout if sensible attempt at step 1	
		correct formula with no working gains 1 mark	1 [10]
(a)	depender	nt	

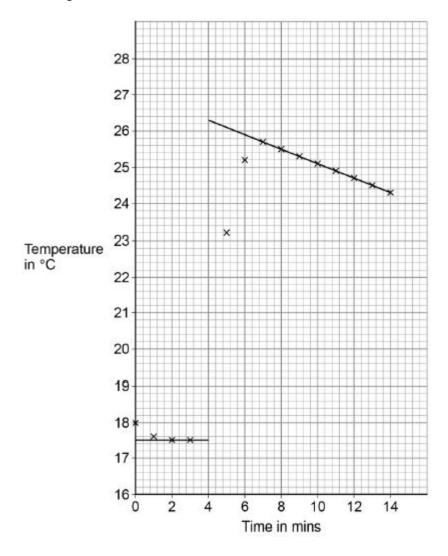
6.

1

(b)	not all water had been removed from the sample	
	allow description of process	1
	heat to constant mass	1
	alternative approach:	
	mass included (droplets of) water on the bottom of the evaporating basin (1) allow bottom of evaporating basin was wet ignore spillages ignore weighing errors	
	dry the bottom of the evaporating basin (1) allow wipe off droplets	
(c)	$\frac{0.22 + 0.23 + 0.20 + \mathbf{X}}{4} = 0.21$	
	(X =) 0.19 (g)	1
(d)	C allow ecf from question (c)	1
	biggest difference between the maximum and minimum values allow calculated range if all ranges are shown A 0.04; B 0.06; C 0.15 and D 0.12	-
(e)	(conversion m ³ to cm ³) 1 m ³ = 1 x 10 ⁶ cm ³	1
	(mass =) 1 x 10 ⁶ x $\frac{0.016}{25}$ allow correct use of an incorrect / no conversion value	1
	= 640 (g)	1
	= 6.4 × 10 ² (g) allow a correctly calculated answer in standard form from an incorrect calculation of mass	1
		[11]

7.

8.


(a) reduction

		1	
	(as H ⁺ ions) gain electrons	1	
(b)	$2 \text{ Cl}^- \rightarrow \text{Cl}_2 + 2 \text{ e}^-$		
	allow 2 Cl ⁻ – 2 $e^- \rightarrow Cl_2$		
	ignore state symbols		
	allow 1 mark for $Cl_2 + e^-$		
	allow 1 mark for – e^- (on lhs) and Cl_2 (on rhs)		
		2	
(c)	water molecules		
		1	
	break down to produce OH ⁻ ions		
	allow dissociate to produce OH ⁻ ions		
		1	
	(which are) attracted to the positive electrode	_	
		1	
	(where OH ⁻ ions are) oxidised		
	or (where OH ⁻ ions) lose electrons		
	ignore discharged		
	ignore oxygen is produced as no halide is present		
		1	
			[8]
(a)	temperature (change)	1	
		1	
(b)	to reach a constant temperature		
	allow to reach room temperature	1	

extends line back to 4 minutes

ignore extension of line beyond 4 minutes

the diagram below scores 2 marks

 (d) (maximum and minimum values at 4 minutes) 26.3 (°C) and 17.5 (°C) allow ecf from (c)

> (temperature change at 4 minutes) = 8.8 (°C)

1

1

1

(e)	the reaction finished / stopped allow maximum temperature has been reached	1	
	(so) energy is lost to surroundings / atmosphere or		
	(so the) solution cools (back to room temperature)		
	allow heat for energy	1	
(f)	aluminium / zinc / iron / beryllium		
	allow Al / Zn / Fe / Be		
	do not accept copper, silver		
	MP2 dependent on a correct answer to MP1	1	
	metal Q is less reactive (than magnesium) or		
	metal Q is lower in reactivity series		
	allow converse	1	
(g)	(unit conversion) $30.0 \text{ cm}^3 = 0.030 \text{ dm}^3$ or $0.500 \text{ dm}^3 = 500 \text{ cm}^3$		
		1	
	(moles = $\frac{30}{500} \times 0.1$ =) 0.006		
	allow correct use of incorrect / no unit conversion		
	or (moles = $\frac{0.030}{0.50} \times 0.1$ =) 0.006		
		1	
	mass = 0.006 × 159.5 allow correct use of incorrect value for number of moles	1	
	= 0.957 (g)		
	allow 0.96 (g)	1	[14]

Page 28 of 28