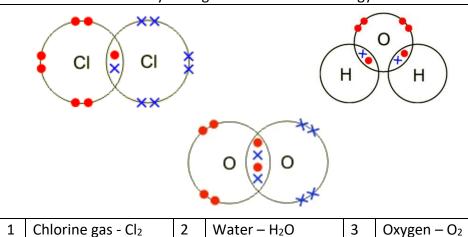


Science: Structure and Bonding

1. Key Words		
Key Word	Definition	
Ion	Charged particle	
Electrostatic attraction	Attraction between ions of opposite charge	
Intermolecular forces	Forces that pull molecules together	
Ionic bonding	Bonding that occurs between a metal and non-metal elements, where electrons are lost or gained from the outer shell of the atom	
Covalent bonding	Bonding that occurs between non-metal elements, where electrons are shared on the outer shell of the atoms	
Metallic bonding	Bonding that occurs in metal elements and alloys	
Delocalised electron	Electron that can move freely in the element	

2. Ionic Bonding

Metal atoms lose electrons to become positive ions Non-metal atoms gain electrons to become negative ions

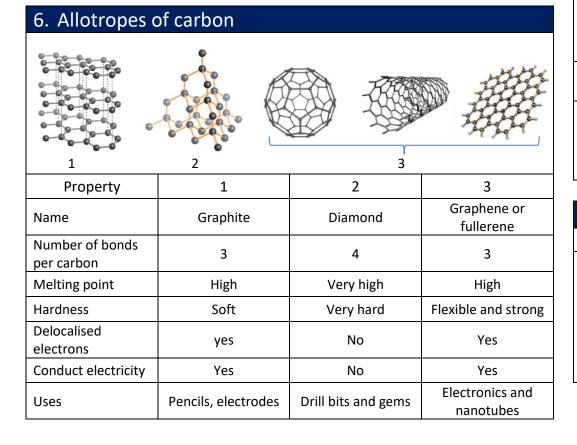

1	Sodium loses an electron from its outer shell to become Na ⁺	
2	Chlorine gains an electron to its outer shell to become Cl	
3	The oppositely charged ions are pulled together by an electrostatic attraction	

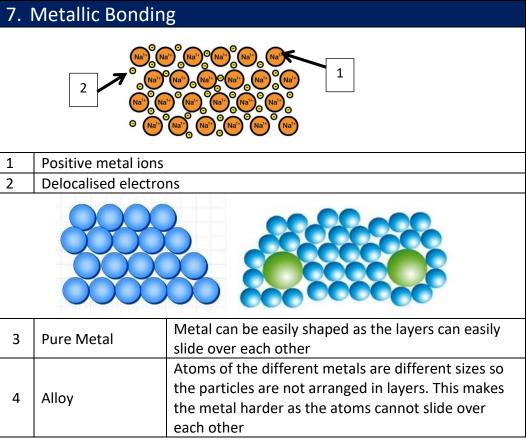
3. Giant Ionic Lattice			
Properties	Reason		
High melting and boiling points point	Atoms are arranged in a large lattice structure with appositely charged ions next to each other. This means a lot of energy is needed to overcome the forces of attraction		
Do no conduct electricity as a solid	lons are fixed in position and not able to move		
Conducts electricity as a liquid or in solution	Ions can move freely and carry a charge		

4. Covalent Bonding

In a covalent bond the electrons on the outer shell are shared to make up full and stable outer shell.

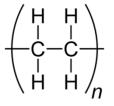
Covalent bonds are very strong and take atom of energy to break


Chlorine and water have single bonds as they share **ONE** pair of electrons


Oxygen has a double bond as it shares **TWO** pairs of electrons

Science: Structure and Bonding

Small covalent molecules Properties Gases, Low boiling and melting points, Low density Strong covalent bonds that require a lot of energy to break Weak intermolecular forces that do not required much energy to break



8. Polymers

A polymer is a long chain of repeated molecular structures

Hydrocarbons (molecules containing hydrogen and carbon) form long chain polymers from small units called monomers.

Polyethene is an example of a polymer made from the monomer ethene.

