
Science: Rate and extent of chemical reactions

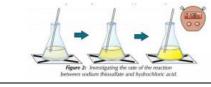
1. Key Words	
Rate of reaction	Amount of reactant used or product
	formed ÷ time
Collision theory	Idea that for a reaction to occur the
	particles have to hit each other with
	enough energy
Activation energy	The minimum energy needed for a
	collision to cause a reaction
Catalyst	A substance which speeds up a
	chemical reaction by lowering the
	activation energy
Reversible reaction	A chemical reaction that can go in
	either direction
Equilibrium	When the forwards and backwards
	reactions happen at the same rate

2. Calculating rates from graphs

Equation	Rate of	react	ion = amount of product ÷ time
Units	cm ³ /s	OR	g/s

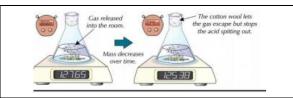
The horizontal line on the graph shows that the reaction has finished

3. Ways to measure a rate of reaction


Volume of gas released

Method:

- 1. Connect a gas syringe to a conical flask
- 2. Add the reactants and start timing
- 3. Record the time taken to reach a specific volume OR record the volume collected in a given time

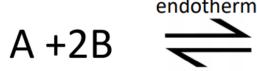

Formation of a solid product (become opaque)

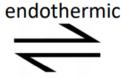
Method:

- 1. Place a black cross below a conical flask
- 2. Add the reactants and start timing
- 3. Record the timt taken for the cross to disappear (no longer visible from above)

Change in mass

Method:


- 1. Place a conical flask containing the reactants onto an electronic balance
- 2. Start the timer and observe the mass
- 3. Record the mass decrease in a given time or until the reaction stops



4. Factors affecting the rate of reaction					
Factor	Change	Effect on	Reason		
		rate			
Temperature	Increase	Increase	The particles gain energy, so		
			move faster and collide more		
			often, increasing the proportion		
			of successful collisions		
Concentration	Increase	Increase	There are more particles so there		
			are more frequent collisions		
Surface area	Increase	Increase	There are more particles available		
			so there are more frequent		
			collisions		
Catalyst	Add	Increase	The lower activation energy		
			means that more successful		
			collision occur		
			1		

5. Catalysts			
1	Reactants		
2	Products		
3	Activation energy without catalyst		
4	Activation energy with catalyst		
	Energy 1 4 Progress of reaction		

6. The effect of changing the conditions of equilibrium (H)

C +D

exothermic

Le Chatelier's principal: a reaction at equilibrium will act to oppose any changes to it

Condition	Change	Effect
Concentration	Increase A or B	Shifts to the right to increase the concentration of C + D
	Decrease A or B	Shifts to the left to increase the concentration of A + B
Temperature	Increase	Shifts right to favour the endothermic reactions, making more C + D
	Decrease	Shifts left to favour the exothermic reactions, making more A + B
Pressure	Increase	Shifts to the right side with the fewest moles so makes more C + D
	Decrease	Shifts to the left side with the most moles so makes more A+B