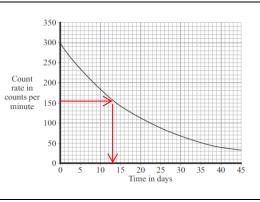
Science: GCSE Atomic Structure and Radiation


1. Radioactivity Key Words		
Background	Radiation that is found in the environment	
radiation	such as from rocks, cosmic rays and fallout	
	from nuclear weapons testing.	
Becquerel (Bq)	Units for measuring the radioactivity of a	
	source.	
Count rate	The speed at which a radioactive source	
	decays (gives out radiation).	
Unstable atom	An atom that has a very large nucleus with	
	a high neutron to proton ration meaning	
	that radiation is emitted from the nucleus.	
Geiger counter	Instrument used to measure radioactivity	
	of a substance.	

ON

2. Types of Radiation				
Type of	Symbol	Structure and	Range and penetration	lonising
radiation		charge		power
Alpha	α	2 protons and 2	Travels up to 5cm in air,	High
		neutrons from	blocked by paper and	
		the nucleus	skin.	
		Charge = +2		
Beta	β	Fast moving	Most travel up to 15cm	Medium
		electron from	in air, blocked by a thin	
		the nucleus	sheet of aluminium.	
		Charge = -1		
Gamma	γ	High energy	Can travel at the speed	Low
		wave	of light so can travel vast	
		Charge = 0	distances. Stopped by	
			1m thick concrete or	
			thick lead plates.	

3. Half-Life

The half-life of a radioactive source is the time it takes for the count rate to decrease by half.

- 1. The starting count rate is 300, so half of that is 150.
- 2. You find 150 on the y-axis and read across to the line.
- 3. Then read down from the line to calculate the time.

So for this graph, the half-life is 15 days. This means that every 15 days the count rate will decrease by half. In 60 days the count rate will be 18.75Bq

	e Equations (HT)		
Alpha	When an alpha particle is emitted from the nucleus 2 protons and 2		
decay	neutrons are given out. This means the atomic number will decrease by 2 and the atomic mass will decrease by 4.		
235 92	$U \longrightarrow \frac{231}{90} Th + \frac{4}{2} He$		
Beta decay	When a beta particle is emitted from an atom, 1 neutron changes into a proton. This means the atomic number will increase by 1 and the atomic mass will stay the same.		
235	$U \longrightarrow \frac{235}{93}Np + \frac{0}{-1}e$		