ATHERTON HIGH SCHOOL
 Science: Forces

1. Key words	
Centre of mass	Position in the centre of the object where the force of gravity acts on the mass
Resultant force	Residual force in a given direction
Balanced forces	Opposing forces that are equal in magnitude
Unbalanced forces	Opposing forces where one force has a greater magnitude
Pressure	Force applied over a given area

2. Contact and Non-contact forces

Contact	Non-contact
Friction	Gravity
Air resistance	Magnetism
Upthrust	Electrostatic
Thrust	

3. Newton's 3 Laws

1
If the resultant force on a stationary object is zero, the object will remain stationary or travel at a constant speed
The acceleration of an object is proportional to the resultant force exerted and inversely proportional to the mass of the object ($\mathrm{F}=\mathrm{ma}$)

3
For every action, there is an equal and opposite reaction

4. Hooke's Law

The extension of a stretched spring is directly proportional to the force applied

Science: Forces part 1

5. Equations	
Weight	Weight $(\mathrm{N})=$ gravitational field strength $(\mathrm{N} / \mathrm{kg}) \times$ mass (kg)
Resultant Force	Force $(\mathrm{N})=$ mass $(\mathrm{kg}) \times$ acceleration $\left(\mathrm{m} / \mathrm{s}^{2}\right)$
Elastic potential energy	Elastic $=1 / 2 \times$ spring constant $(\mathrm{N} / \mathrm{m}) \times$ extension ${ }^{2}(\mathrm{~m})$ potential energy (j)

6. Pressure in fluids

Pressure $=$ height x density \times gravitational field strength
$(\mathrm{Pa}) \quad(\mathrm{m}) \quad\left(\mathrm{Kg} / \mathrm{m}^{3}\right) \quad(\mathrm{N} / \mathrm{kg})$

Pressure increases with depth in a liquid.
Pressure decreases with altitude in air

