ATHERTON HIGH SCHOOL

Science: Energy Changes

1. Key Words	
Key Word	Definition
Exothermic	Reaction that has an overall increase in thermal energy
Endothermic	Reaction that has an overall decrease in thermal energy
Activation energy	Amount of energy needed for a reaction to occur
Decomposition	Use of thermal energy to break down a compound e.g. calcium carbonate \rightarrow calcium oxide + carbon dioxide

2. Energy Profiles				
1	Reactants			
2	Activation energy			
3	Overall energy change			
4	products			

3. Exothermic and Endothermic Reactions

4. Calculating Bond Energies (HT only)								
Energy must be supplied to break the bonds in the reactants								
Energy is released when bonds in the products are made								
Example:								
Bond	H – H	Br – Br	H – Br	–	CI – CI			
Bond energy (kJ)	436	193	366	150	242			
$H-H$ + $Br-Br$ \rightarrow $2H-Br$								
Reactants Products								
H – H = 436	– H = 436 H – Br = 366 x 2 = 732							
Br – Br = 193	Total energy = 732							
Total energy = 436 + 193 = 629								
Overall energy change = 692 – 732 = -103 kJ								
The reaction is exothermic								