
Science: Quantitative Chemistry

1. Key Words	
Relative atomic	This is the relative mass of an atom of an element
mass (A _r)	compared to other elements.
Relative formula	This is the sum total of the relative atomic mass of all
mass (M _r)	the atoms in a compound

3. Percentage by mass

Percentage by mass = total atomic mass of element in the compound x 100 Relative formula mass of the compound

Example 1: Percentage by mass of sodium in sodium chloride

Atomic mass of Na = 23 M_r of NaCl = 58.5 Percentage by mass = $\frac{23 \times 100}{58.5}$ = **39.3% Example 2: Percentage by mass of oxygen in aluminium oxide** Atomic mass of O = 16 There are 3 atoms of O, so $16 \times 3 = 48$ M_r of Al₂O₃ = 102 Percentage by mass = $\frac{48 \times 100}{102}$ = **47%**

Mole	Number of particles needed to make the mass equal to the relative atomic mass	
Avogadro constant	6.022 x 10 ²³ particles in 1 mole	
M	oles (M) = <u>mass (g)</u> .	
Relative formula mass		
Example: 27.4g of so	dium chloride is made in a reaction, how many moles	
have been made?		
M _r of NaCl = 58.5		
Μ	oles (M) = <u>27.4</u> = 0.47M	
	58.5	

5. Calculating concentration

Conversions: there are 1000cm ³ in 1dm ³			
128cm ³ in to dm ³	128 ÷ 1000 = 0.128dm ³		
1.45dm ³ in to cm ³	1.45 x 1000 = 1450cm ³		
Concentration (g/dm ³) = <u>mass (g)</u> Volume (dm ³)			
Example: 27.4g of sodium chloride is added to 500cm ³ of water. What is the concentration in g/dm ³ ?			
Conversion: $500 \text{ cm}^3 \div 1000 = 0.5 \text{ dm}^3$			
Concentration	$n = \frac{27.4}{0.5}$ = 54.8 g/dm ³		

6. Calculating concentration in Moles (HT only)		
Concentration (M/dm ³) = <u>Moles(M)</u> Volume (dm ³)		
Example: 27.4g of sodium chloride is added to 500cm ³ of water. What is the		
concentration in g/dm ³ ?		
Conversion: $500 \text{ cm}^3 \div 1000 = 0.5 \text{ dm}^3$		
Concentration = $\frac{27.4}{0.5}$ = 54.8 g/dm ³		