ATHERTON HIGH SCHOOL

## Science: Quantitative Chemistry

## 1. Key Words

| Relative atomic <br> mass $\left(A_{r}\right)$ | This is the relative mass of an atom of an element <br> compared to other elements. |
| :--- | :--- |
| Relative formula <br> mass $\left(M_{r}\right)$ | This is the sum total of the relative atomic mass of all <br> the atoms in a compound |

## 2. Calculating $\mathrm{M}_{\mathrm{r}}$


## 3. Percentage by mass

Percentage by mass = total atomic mass of element in the compound $\times 100$ Relative formula mass of the compound

## Example 1: Percentage by mass of sodium in sodium chloride

Atomic mass of $\mathrm{Na}=23$

| $\mathrm{M}_{\mathrm{r}}$ of $\mathrm{NaCl}=58.5$ |  |
| ---: | :--- |
|  | Percentage by mass |$=\frac{23 \times 100}{58.5}$

## Example 2: Percentage by mass of oxygen in aluminium oxide

Atomic mass of $\mathrm{O}=16 \quad$ There are 3 atoms of O , so $16 \times 3=48$
$\mathrm{Mr}_{\mathrm{r}}$ of $\mathrm{Al}_{2} \mathrm{O}_{3}=102$

$$
\begin{aligned}
\text { Percentage by mass } & =\frac{48 \times 100}{102} \\
& =47 \%
\end{aligned}
$$

## 4. Calculating Moles (HT only)

| Mole | Number of particles needed to make the mass equal <br> to the relative atomic mass |
| :--- | :--- |
| Avogadro constant | $6.022 \times 10^{23}$ particles in 1 mole |
| Moles $(\mathrm{M})=\frac{\text { mass }(\mathrm{g})}{\text { Relative formula mass }}$ |  |
| Example: 27.4g of sodium chloride is made in a reaction, how many moles <br> have been made? |  |
| Mr of $\mathrm{NaCl}=58.5$ |  |
| $\operatorname{Moles}(\mathrm{M})=\underline{27.4}=0.47 \mathrm{M}$ |  |
| 58.5 |  |

5. Calculating concentration

Conversions: there are $1000 \mathrm{~cm}^{3}$ in $1 \mathrm{dm}^{3}$

| $128 \mathrm{~cm}^{3}$ in to $\mathrm{dm}^{3}$ | $128 \div 1000=0.128 \mathrm{dm}^{3}$ |
| :--- | :--- |
| $1.45 \mathrm{dm}^{3}$ in to $\mathrm{cm}^{3}$ | $1.45 \times 1000=1450 \mathrm{~cm}^{3}$ |

$$
\text { Concentration }\left(\mathrm{g} / \mathrm{dm}^{3}\right)=\frac{\text { mass }(\mathrm{g})}{\text { Volume }\left(\mathrm{dm}^{3}\right)}
$$

Example: $\mathbf{2 7 . 4 \mathrm { g }}$ of sodium chloride is added to $500 \mathrm{~cm}^{3}$ of water. What is the concentration in $\mathrm{g} / \mathrm{dm}^{3}$ ?
Conversion: $500 \mathrm{~cm}^{3} \div 1000=0.5 \mathrm{dm}^{3}$
Concentration $=\underline{\underline{27.4}}=54.8 \mathrm{~g} / \mathrm{dm}^{3}$
0.5
6. Calculating concentration in Moles (HT only)

$$
\text { Concentration }\left(\mathrm{M} / \mathrm{dm}^{3}\right)=\frac{\operatorname{Moles}(\mathrm{M})}{\text { Volume }\left(\mathrm{dm}^{3}\right)}
$$

 concentration in $\mathrm{g} / \mathrm{dm}^{3}$ ?
Conversion: $500 \mathrm{~cm}^{3} \div 1000=0.5 \mathrm{dm}^{3}$

$$
\text { Concentration }=\underline{27.4}=54.8 \mathrm{~g} / \mathrm{dm}^{3}
$$

0.5

